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0. Preliminaries

Separability means that there exists a countably in�nite sequence that is dense in the space,
meaning every non-empty open interval contains one element of the sequence.

0.1. Linear Spaces

Bases (Hamel) exist in any linear space (via Zorn's lemma): Any linearly independent subset
can be extended to a basis in a linear space.

Complemented spaces: If E = F ⊕ E, then F is a complement of G and G is a complement
of F (For E,F,G linear spaces). The direct sum here means that the intersection F ∩G is
is trivial, i.e. = {θ}.
Every linear subspace is complemented: Take a basis in a subspace F and extend it to a
basis in E. Say the span of the �added� elements is G. Then E = F ⊕G.

Projections: P : E → F is a projection if P 2 = P for a linear map P . In this case F = P (E)
is a linear space and (I − P )(E) = G is a complement to F .
Conversely, every direct sum gives a projection: If E = F⊕G, then de�ne P (x = f+g) = f
where x = f + g is a unique decomposition, then P 2 = P and P (E) = F .

Quotients: Let E be a vector space and F ⊂ E a linear subspace. Then de�ne x ∼ y if and
only if x − y ∈ F , which is an equivalence relation. Then E/ ∼= {x + F : x ∈ E} is the
quotient set and q : E → E/F, q(x) = x+ F is the well-de�ned, onto quotient map.

0.2. Topological spaces compatible with linear structure

By compatibility, we mean that addition and scalar multiplication are continuous operations.
Not all topologies are such topologies (e.g. R2 with the discrete metric. The scalar multiplication
is not continuous).

A special such family is normed spaces.

Norm: ‖·‖ : E → R such that

(N1) ‖x‖ = 0↔ x = θ and ‖x‖ > 0↔ x 6= θ

(N2) ‖λx‖ = |λ|‖x‖
(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Banach Space: A normed space that is complete. An arbitrary normed space need not be
complete. For Banach spaces, Baire's Category Thm. holds, resulting in the following:

Open Mapping Thm: A continuous and onto linear map T : E → F for E,F Banach
spaces is an open map (takes open sets to open sets.)

Banach's Isomorphism Thm: Any continuous (linear) bijection between Banach spaces
is a homeomorphism (itself and its inverse are continuous).

Uniform Boundedness Principle: Let T be a family of linear continuous maps T :
E → F between two Banach spaces. If,

∀x ∈ E sup
T∈T
‖Tx‖ <∞
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then
sup
T∈T
‖T‖op <∞

Closed Graph Thm: Any linear continuous T : E → F between two Banach spaces
having a closed graph is continuous.
Gr(T ) = {(x, Tx) : x ∈ E} ⊂ E × F is a closed set if (xn, Txn) → (x, y) then
x, y ∈ Gr(T ), i.e. y = Tx.

Schamder Basis: A sequence {xn} in a normed space E is a Schamder basis if

∀x ∈ E ∃λn's such that x =
∞∑
i=1

λnxn

Every normed space does not have a Schamder basis. If a normed space has a Schamder
basis, then it is separable.

Topological Sum & Complementation: For a normed space, we say E = F ⊕G is topolog-
ical if it is a direct sum (algebraic) and the projection P is continuous.
The followings are equivalent for a normed space E = F ⊕G where the sum is algebraic:

a) The sum is topological.

b) The map T : F ×G→ E, T (f, g) = f + g is a homeomorphism.

Continuous Projection: If P : E → F is a continuous projection, then F = ker(I − P ) is
closed. In a topological space E with F ⊂ E a linear subspace,

E/F = {x+ F : x ∈ E} = E/∼ for x ∼ y ↔ x− y ∈ F

where E = F ⊕ E/F . Moreover, if E is a normed space (or a topological space in general),
we require the projection to be continuous as well. In this case,

� The algebraic direct sum is topological.

� ‖x+ F‖E/F = inf{‖x− y‖E : y ∈ F} is a valid norm if and only if F is closed.

� f E is Banach, so is E/F .

� E = F ⊕G is a topological sum if and only if G ∼= E/F topologically.
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1. Inner Product & Hilbert Spaces

We will take the �eld K = R or K = C by convention.

1.1. Inner Product

Inner Product (Pre-Hilbert) Space: A lin space E is an inner product(pre-Hilbert) space
is there exists a function (·|·) : E × E → K satisfying

(P1) (x|y) = (y|x)
(P2) (x+ y|z) = (x|z) + (y|z)
(P3) (λx|y) = λ(x|y)

P2 and P3 say that we have linearity in the �rst variable.

(P4) (x|x) > 0 if x 6= 0

One also has the following:

a) (x|y + z) = (x|y) + (x|z)
b) (x|λy) = λ (x|y)

Inner product is conjugate linear in the second variable.

c) ∀x, y (θ|x) = (x|θ) = 0

d) If (x|z) = (y|z) for all z, then x = y. In particular if (x|z) = 0 for all z, then x = θ

Induced Norm: The inner product induces the following norm: ‖x‖ = (x|x)1/2. Then the
following hold:

Parallelogram Law: ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)
Polarization Identity: 4 (x|y) = ‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − ‖x− iy‖2

If K = R, we don't have the i terms.

Cauchy-Schwartz Inequality: |(x|y)| ≤ ‖x‖‖y‖

Every inner product space E is a normed space under the induced norm, and the inner
product is continuous on E × E. Moreover, if the norm of a normed space satis�es the
parallelogram law, then it comes from an inner product.

1.2. Orthogonality

Orthogonality: If (x|y) = 0, then we say x ⊥ y.
A set S ⊂ E is orthogonal to some x if for all y ∈ S, x ⊥ y.
For S ⊂ E, S itself is an orthogonal set if for all x 6= y, x ⊥ y.

Pythagorean Thm: For some orthogonal sequence {x1, ..., xn},∥∥∥∥ n∑
k=1

xk

∥∥∥∥2 = n∑
k=1

‖xk‖2

Any orthogonal set is linearly independent.
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Orthonormality: A set S is orthonormal if it is orthogonal and for all x ∈ S, ‖x‖ = 1.

Gramm-Schmidt Orthonormalization: Let {xn} be a linearly independent sequence in an
(in�nite dimensional) inner product space. Then there is an orthonormal sequence {un}
such that

〈{x1, ..., xn}〉 = 〈{u1, ..., un}〉

for all n. If {xn} is not linearly independent but 〈{x1, ..., xn}〉 is in�nite dimensional, then
there exists an orthonormal sequence {un} and a kn increasing sequence such that

〈{xk1 , ..., xkn}〉 = 〈{u1, ..., un}〉

Bessel's (In)Equality: Let x1, ..., xn be orthonormal. Then for all x, for all n we have∥∥∥∥x− n∑
k=1

(x|xk)xk
∥∥∥∥2 = ‖x‖2 − n∑

k=1

|(x|xk)|2

and thus
n∑
k=1

|(x|xk)|2 ≤ ‖x‖2

meaning that the series
n∑
k=1

|(x|xk)|2 is absolutely convergent.

Hilbert Space: An inner product space that is complete under the induced norm is called a
Hilbert Space.
Completion of an inner product space is again an inner product space, and hence a Hilbert
space.

Convergence of an orthonormal sequence: Let {xn} be orthonormal in a Hilbert space.
Then

∞∑
k=1

λkxk convergent ⇐⇒
∞∑
k=1

|λk| <∞

Total Sets: Let E be an inner product space. The {xn} is said to be total if

∀x ∈ E (∀n (x|xn) = 0→ x = θ)

If {en} is a (Schamder) basis in an inner product space, then it is linearly independent,
total and its span is dense. (In fact, �nite rational linear combinations of {en} is dense.)

Basis, Totality, Parseval: Let {xn} be an orthonormal sequence in a Hilbert space. Then the
followings are equivalent:

a) {xn} is an (orthonormal) basis.

b) {xn} is total.

c) Parseval's Identity:
∞∑
n=1
|(x|xn)|2 = ‖x‖2 for all x.

Basis, Separability, Totality: Let H be a Hilbert space. Then the following are equivalent:

a) H is separable.

b) H has an orthonormal basis.

c) H has a total sequence.
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1.3. Isomorphisms

Homeomorphisms: Let X,Y be topological spaces. A map T : X → Y is said to be a
homeomorphism if T is invertible and both T and T−1 are continuous.

Isomorphism: If further X,Y have linear structure (such as in normed spaces), then we require
T be linear as well, in which case it is called an isomorphism.

Norm-isometry: If T also preserves (only) norms, i.e. ‖Tx‖ = ‖x‖∀x then it is called a norm-
isometry. An isometry may fail to be onto, even though it is one-to-one, invertible from its
image with its inverse continuous on its image.

Isometric Isomorphism: It T is onto as well, then it is called an isometric isomorphism.

Hilbert space Isometry: If X,Y are Hilbert spaces, a linear map T : X → Y is a Hilbert
space isometry if (Tx|Ty) = (x|y). If it is also onto, it will be a Hilbert space isometric
isomorphism.

Separability & Isomorphism Thm: Let H be a separable Hilbert space with �eld K. Then

� If n = dim(H) <∞, i.e. H is �nite dimensional, then H ∼= Kn

� If dim(H) =∞, i.e. H is in�nite dimensional, then H ∼= l2

Here all isomorphisms are Hilbert space isomorphisms, i.e. (Tx|Ty) = (x|y)

1.4. Closed Linear Subspaces in a Hilbert Space

Annihilator: Let S ⊂ H be a non-empty subset of a Hilbert space. The annihilator of S is
de�ned as

S⊥ = {x ∈ H : (x|s)∀s ∈ S}

Facts:

1. S ⊂ (S⊥)⊥ = S⊥⊥

2. S ⊂ P → P⊥ ⊂ S⊥

3. S⊥⊥⊥ = S⊥

For all non-empty S ⊂ H, S⊥ is a linear closed subspace.

Unique Representations using Orthogonal Sets: Let S, P ⊂ H be linear subspaces of a
Hilbert space H. If S ⊥ P , then for all x ∈ S +P = {s+ p : s ∈ S, p ∈ P} where the sum
is element-wise, there exists a unique representation x = s + p where s ∈ S, p ∈ P . This
means that S + P = S ⊕ P algebraically. If further S, P are closed, the S + P = S ⊕ P
topologically and S + P is closed.

Annihilators in Finite Dimension: Let P ⊂ H be a �nite dimensional subspace of a Hilbert
space H. Then facts:

1. P is closed.

2. H = P ⊕ P⊥ topologically.

3. P = P⊥⊥
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1.5. Convex Sets and Minimizing Vector

Convexity: A segment joining x to y in a linear space is

{z : z = αx+ (1− α)y, 0 ≤ α ≤ 1}

If a set S contains the segment joining x to y for all x, y ∈ S, then it is said to be convex.
Facts:

1. Every linear subspace is convex.

2. In an inner product space, the line segment joining x to y can also be given as

{z : ‖x− y‖ = ‖x− z‖+ ‖z − y‖}

However, this is not true in a general normed space, certainly not in a metric space.

3. The unit ball, although not linear, is convex.

Minimizing Vector Thm: Let non-empty S ⊂ H be a complete convex subset in an inner
product space H. Then for all x ∈ H, there exists a unique y0 ∈ S such that ‖x − y0‖ ≤
‖x− y‖ for all y ∈ S. (i.e. d(x, y0) = d(x, S)).
Corollaries:

1. If S is closed and convex in a Hilbert space H, then for all x ∈ H, there exists a
unique y0 ∈ S such that d(x, y0) = d(x, S).

2. In every complete, convex subset S of an inner product space,there exists a unique
y0 ∈ S of minimum norm (take x = θ in the theorem.)
(One can take a closed and convex subset of a Hilbert space.)

3. In every closed linear subspace E of a Hilbert space H, for all x ∈ H there exists a
unique y0 ∈ E such that d(x, y0) = d(x,E).

4. Let S be a complete linear subspace of an inner product space H (or a closed linear
subspace of a Hilbert space). Then for all x ∈ H, the minimizing vector (which exists
by the thm.) satis�es x− y0 ⊥ S (x− y0 ∈ S⊥).

1.6. Orthogonal Complements & Projections

Orthogonal Complement & Projection: Let E be an inner product space and F ⊂ E be a
linear subspace. If E = F ⊕ G algebraically and F ⊥ G, then G is called an orthogonal
complement to F and the projection P : E → F (= P (E)) an orthogonal projection.
Facts on (algebraic) projections P 2 = P : Let E = F ⊕G, P : E → F .

1. Px = x↔ x ∈ F
2. E = Ran(P )⊕ ker(P )

3. If E is a normed space and P is continuous, then Ran(P ) and ker(P ) are closed linear
spaces

4. If E is Banach, then the converse is also true. Namely, if F,G are closed linear sub-
spaces and E = F ⊕G algebraically, then P is continuous, i.e. the sum is topological.

5. (NEW) If E is an inner product space and P is an orthogonal projection, then

a. (x|Py) = (Px|y) for all x, y ∈ E.
b. (x|Px) = ‖Px‖2, so ‖Px‖ ≤ ‖x‖, and so P is automatically continuous.
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Hilbert Spaces & Orthogonal Complementation: Let H be a Hilbert space, S ⊆ H be a
closed linear subspace. Then

a. H = S ⊕ S⊥ topologically.

b. S = S⊥⊥

therefore facts:

1. In a Hilbert space, every closed linear subspace is topologically (and in particular
orthogonally) complemented, and S = S⊥⊥.

2. The converse statement is also true: If E is a Banach space such that every closed lin-
ear subspace has a topological complement, then E is a Hilbert space (Lindenstrauss-
Tzafriri 1971).

3. Let H be a Hilbert space and F ⊆ H. Then

a. F
⊥
= F⊥, F = F⊥⊥

b. F is dense if and only if F⊥ = {θ}
4. Let H be a Hilbert space and S ⊂ H. Then S⊥⊥ is the smallest closed linear subspace

of H containing S, i.e. 〈S〉 = S⊥⊥. If further S is linear, then S = S⊥⊥.

1.7. Intermission: Continuous Linear Maps and the Dual

Operator Norm: Let E,F be normed spaces. We write

L(E,F ) = {T : E → F : T is linear and continuous}

L(E,F ) is a normed space with respect to the operator norm de�ned as

‖T‖op = sup
‖x‖≤1

‖Tx‖

Equivalently,
‖T‖op = inf{M > 0 : ‖Tx‖ < M‖x‖ ∀x ∈ E}

meaning if ‖Tx‖ < M‖x‖, then ‖T‖op < M . Also

‖T‖op = sup

{
‖Av‖
‖v‖

: v 6= θ for v ∈ V
}

If F is Banach, then so is L(E,F ).

Dual Space: Let E be a normed space. Then the dual of E is de�ned as

E′ = {f : E → K : f is continuous and linear} = L(E,K)

E′ is always Banach. The second dual E′′ = (E′)′ is de�ned similarly.

Canonical Injection Map: Let x ∈ E. De�ne j : E → E′′ which maps x to a functional
j(x) ∈ E′′. Now note that as j(x) ∈ E′′, its domain is the functionals de�ned on E,i.e.
E′ = L(E,K). So, de�ne j(x), as usual, by how it is evaluated in an element f in the
domain E′, as j(x)f = f(x).
j(x) is linear, well-de�ned and

|j(x)f | = |f(x)| ≤ ‖f‖‖x‖

meaning that ‖j(x)‖ ≤ ‖x‖, so j is continuous. Furthermore, it is an isometry:
‖j(x)‖ = ‖x‖. But it is not always onto, so not an isometric isomorphism in general.
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1.8. The Dual H ′ of a Hilbert Space

Dual of an Inner Product Space: Let H be an inner product space. De�ne T : H → H ′ by
(Ty)x , (x|y). 1 Then

0. T is well-de�ned, i.e. Ty ∈ H ′.
1. T is not linear but `conjugate linear', i.e. T (αx+ y) = αTx+ Ty.

2. T is a norm-isometry.

3. If T is surjective, then H is a Hilbert space.

Riesz-Frechet Thm: (Converse of the last item above) Let H be a Hilbert space. The for all
f ∈ H ′, there exists a unique y ∈ H such that f(x) = (x|y) for all x ∈ H.

Inner Product of the Dual Space: Let H be a Hilbert space and let f, g ∈ H ′. Then by
Riesz-Frechet Thm, we know that there are unique yf , yg ∈ H such that f(x) = (x|yf ) and
g(x) = (x|yg). Then the operation

(f |g)H′ = (yg|yf )H

is a valid inner product, and H ′ an inner product space.

H ′ to H: Let H be a Hilbert space. The map T : H ′ → H,Tf = yf (which is de�ned by the
Riesz-Frechet Thm) is a norm-isometric isomorphism, but T is not linear but conjugate
linear.

Summary:

� T above is a norm-isometric isomorphism, H ∼= H ′.

� T is a conjugate linear Hilbert space isometry, H ∼= H ′.

� But applying T twice, we obtain H ∼= H ′′, a linear Hilbert space isometric isomor-
phism.

� If K = R, then by itself T is a Hilbert space isometric isomorphism.

1.9. The Adjoint Map

Adjoint Map: Let T : H → K be a linear and continuous map, where H,K are inner product
spaces. Then there exists a unique linear continuous map T ∗ : K → H such that

(Th|k) = (h|T ∗k)

for all h ∈ H, k ∈ K. This T ∗ is called the adjoint map.

Properties of the Adjoint Map: Let S, T : H → H be continuous and linear maps where H
is a Hilbert space. Then

1. (S + T )∗ = S∗ + T ∗

2. (λT )∗ = λT ∗

3. (T ∗y|x) = (y|Tx)
4. (T ∗)∗ = T

1Here notice that T maps the element y ∈ H to the functional Ty ∈ H ′, whose evaluation at a point x ∈ H is

de�ned as (x|y).
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5. ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2 = ‖T ∗‖2

6. T ∗T = 0↔ T ≡ 0, i.e. the zero function

7. (ST )∗ = T ∗S∗

Perp and Adjoint: Let T : H → H be a linear and continuous map, H a Hilbert space. If
S ⊂ H and T (S) ⊂ V ⊂ H, then

T ∗(V ⊥) ⊂ S⊥

Consequence: Let T : H → K be a linear and continuous map between Hilbert spaces.
Let M ⊂ H and N ⊂ K be linear and closed. Then

T (M) ⊂ N ↔ T ∗(N⊥) ⊂M⊥

Kernel, Perp and Adjoint: Let T : H → K be a linear and continuous map between Hilbert
spaces. Then

� ker(T ) = T ∗(K)⊥

� ker(T )⊥ = T ∗(K)

� ker(T ∗) = T (H)⊥

� ker(T ∗)⊥ = T (H)

Thus, in particular, H = ker(T )⊕ T ∗(K) = ker(T )⊕ ker(T )⊥ topologically.
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2. Operators on Hilbert Spaces

2.1. Some Operator Types and Their Properties

Operator Types: Let T ∈ L(H,H), i.e. a linear and continuous map between Hilbert spaces.
We say that T is

isometric if and only if T ∗T = I,

unitary if and only if T ∗T = TT ∗ = I, therefore T−1 = T ∗,

self-adjoint (symmetric, hermitian) if and only if T = T ∗,

a projection if and only if T 2 = T and T = T ∗ (if orthogonal, then T = T ∗ and continuity
are automatic), and

normal if and only if T ∗T = TT ∗.

Remarks:

1. A unitary operator is isometric and normal.

2. A projection is self-adjoint.

3. Any self-adjoint operator is normal.

4. An operator is isometric and normal if and only if it is unitary.

5. For all T , TT ∗ and T ∗T are always self-adjoint.

Operators being Zero: Let T ∈ L(H,H) where H is a Hilbert space. Then

1. If S ⊂ H is a total set and T (S) = {θ}, then T ≡ 0.

2. For K = C, if (Tx|x) = 0 for all x ∈ H, then T ≡ 0.
For K = R, we further need T be self-adjoint.

Operators being Equal: (Corollary to the above) Let S, T ∈ L(H,H). Then

1. If Tx = Sx on a total subset of H, then T ≡ S.
2. For K = C, if (Tx|x) = (Sx|x) for all x ∈ H, then T ≡ S.

2.1.1. Isometric Operators

TFAE: Let T ∈ L(H,H), where H is a Hilbert space. Then, the followings are equivalent:

a) ‖Tx‖ = ‖x‖ for all x ∈ H (norm isometry)

b) d(Tx, Ty) = d(x, y) for all x, y ∈ H (metric isometry)

c) (Tx|Ty) = (x|y) for all x, y ∈ H (Hilbert space isometry)

d) T is an isometric operator, i.e. T ∗T = I.

Not-Ontoness: An isometric operator NEED NOT be onto.

Closed Range: If T ∈ L(H,H) where H is Hilbert, is an isometry, then its range is closed.
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2.1.2. Unitary Operators

TFAE: Let T ∈ L(H,H), where H is a Hilbert space. Then, the followings are equivalent:

a) T is unitary.

b) T ∗ is unitary.

c) T and T ∗ are both isometric.

d) T is isometric and T ∗ is injective.

e) T is isometric and onto.

f) T−1 = T ∗.

Unitariness in `2: Let T ∈ `2 → `2 be a diagonal operator, i.e. Ten = µnen for all n where
{en} is the Kroenecker-Delta sequence. Then T is unitary if and only if |µn| = 1 for all n.

2.1.3. Self-Adjoint Operators

TFAE: Let T ∈ L(H,H), where H is a Hilbert space, and K = C. Then the followings are
equivalent:

a) T is self-adjoint.

b) (Tx|y) = (x|Ty) for all x, y ∈ H.

c) (Tx|x) = (x|Tx) for all x ∈ H.

d) (Tx|x) ∈ R for all x ∈ H.

Properties: Let S, T ∈ L(H,H) be self-adjoint, R ∈ L(H,H). Then

a) S + T and λT for λ ∈ R are self-adjoint.

b) R∗R and RR∗ are always self-adjoint.

c) ST is self-adjoint if and only if ST = TS, i.e. they commute.

d) R has a decomposition R = R1 + iR2 where both

R1 =
1

2
(R+R∗) R2 =

1

2i
(R−R∗)

are self-adjoint.

e) ‖T‖op = sup{|(Tx|x)| : ‖x‖ ≤ 1} = sup{|(Tx|x)| : ‖x‖ = 1}

2.1.4. Normal Operators

TFAE: Let T ∈ L(H,H), where H is a Hilbert space, and K = C. Then the followings are
equivalent:

a) T is normal, i.e. TT ∗ = T ∗T .

b) T ∗ is normal.

c) ‖Tx‖ = ‖T ∗x‖ for all x ∈ H.

12 Contents



Introduction to Hilbert Spaces - Cheat Sheet O§ul Can Yurdakul

2.2. The Spectrum and Resolvent Sets

2.2.1. Inverse Operator

Invertibility: Let E,F be normed spaces. Then we say that T ∈ L(E,F ) is invertible if there
exists S ∈ L(F,E) such that TS = IF and ST = IE , and we write S = T−1.
If T : E → F has a topological inverse, then it has an algebraic inverse, so it is a bijection.
However, in general a continuous bijection T may fail to have a continuous inverse.

Finite Dimension: Let E be a �nite dimensional normed space, and T ∈ L(E,E). Then the
followings are equivalent:

1. T is injective.

2. T is surjective.

3. T has a right inverse, i.e. TS = IE .

4. T has a left inverse, i.e. ST = IE .

5. T is invertible.

2.2.2. The Spectrum and Resolvent Sets

We assume K = C.

Spectrum & Resolvent Set: Let T ∈ L(H,H), where H is a Banach space. The set

σ(T ) = {λ ∈ C : λI − T is not invertible}

is called the spectrum of T . The set

ρ(T ) = {λ ∈ C : λI − T is invertible}

is called the resolvent set of T .

Components of σ(T ): If dimH = ∞, there are three reasons as to why (λI − T )−1 may fail
to exist:

� If (λI − T ) is not injective, then λ ∈ σp(T ), the point spectrum. In this case λ is
called an eigenvalue.

� If (λI − T ) is injective but not surjective, although (λI − T )H ⊂ H is dense, then
λ ∈ σc(T ), the continuous spectrum.

� If (λI − T ) is not injective nor surjective, with not even (λI − T )H ⊂ H being dense,
then λ ∈ σr(T ), the residual spectrum.

Then we have
σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T )

and all components are disjoint.

Taylor-like Inversion: Let A ∈ L(E,E), where E is Banach and ‖A‖op ≤ 1. Then I − A is
invertible and

(I −A)−1 =
∞∑
n=0

An
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Sets of Invertible/Non-invertible Operators: Let E be a Banach space. Call the set of
invertible operators as G ⊂ L(E,E). Then G is an open set, which makes the set of
non-invertible operators L(E,E)\G a closed set.

Compactness of σ(T ): Let E be a Banach space and T ∈ L(E,E). Then σ(T ) is a compact
subset of C, and it is contained in the closed disc {z : |z| ≤ ‖T‖op}.

2.2.3. Eigenvalues

Eigenvalue and Eigenvector: Let T ∈ L(E,E). Then λ ∈ C is called an eigenvalue if there
exists some x 6= θ such that Tx = λx, where x is called an eigenvector. Equivalently, λ ∈ C
is an eigenvalue if and only if ker(λI − T ) 6= {θ}, and so ever θ 6= x ∈ ker(λI − T ) is an
eigenvector of λ.
Every eigenvector determines a unique eigenvalue, but an eigenvalue may have many eigen-
vectors. Furthermore, the eigenvectors of a given eigenvalue form a linear space.
λ ∈ C is an eigenvalue if and only if (λI − T ) is nor injective and any θ 6= x ∈ ker(λI − T )
is an eigenvector.
Some easy examples:

1) For µI, µ is the only eigenvalue.

2) Eigenvalues of a projection P 6= I are exactly {0, 1}.
3) T is not injective if and only if 0 ∈ σ(T ).

Finite Dimensional H: If dimH <∞, then σ(T ) = σp(T ), so every element of the spectrum
is an eigenvalue.

Properties: Let λ ∈ C be an eigenvalue of T ∈ L(H,H), where H is a Hilbert space. Then the
followings hold:

a) |λ| ≤ ‖T‖op, which is true for any Banach space (and not just Hilbert spaces).

b) If T is self-adjoint, then λ ∈ R even if K = C.
c) If T is an isometry, then |λ| = 1.

d) If T is normal, i.e. T ∗T = TT ∗, then

d.i) x is an eigenvector of T if and only if x is an eigenvector of T ∗.

d.ii) λ is an eigenvector of T if and only if λ is an eigenvector of T ∗.

d.iii) If λ 6= µ are two eigenvalues of T , then their associated eigenvalue spaces are
orthogonal.

2.3. Compact Operators

Compact Operator: Let T ∈ L(E,F ), where E,F are normed spaces. T is called compact
if T (UE), where UE is the closed unit ball of E, is relatively compact, i.e. T (UE) ⊂ F
is compact. In other words, T takes a sequence in UE to a sequence in F which has a
convergent subsequence. The set of compact operators is denoted by K(E,F ) ⊂ L(E,F ).
A couple of remarks:

� Any continuous �nite dimensional map, i.e. dim(Ran(T )) <∞, is compact.

� I : E → E, where E is a normed space, is compact if and only if dimE <∞.
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� If P is a continuous projection, then P is compact if and only if P (E) is �nite dimen-
sional.

� De�ne T : `2 → `2 as element-wise multiplication with �xed and bounded {ηn}, so
T{xn} = {ηnxn}. If this T is compact, then ηn → 0.

� If T ∈ L(E,F ) and F is Banach, then T is compact if and only if T (UE) is precompact
in F , i.e. its closure is compact.

Facts on Compact Operators: Let E,F be normed spaces.

a) K(E,F ) ⊂ L(E,F ), meaning every compact operator is continuous.

b) K(E,F ) is a closed linear subspace of L(E,F ), provided that F is Banach.

c) If E0, F0 are normed spaces, R ∈ L(E0, E), S ∈ L(F, F0) and T ∈ K(E,F ), then STR
is compact.
This results says that K(E,E) is an ideal in the ring with identity over L(E,E).

d) Let H be a Hilbert space. Then T ∈ L(H,H) is compact if and only if T ∗ ∈ L(H,H)
is compact.

Induced Normal Operators: Let {λk} be a bounded sequence of complex numbers and H
be a separable Hilbert space, with an orthonormal basis {xn}. Then there exists a unique
normal operator T ∈ L(H,H) such that it has eigenvalues {λk} with their corresponding
eigenvectors {xk}, i.e. Txk = λkxk for all k. This T is given by

Tx = T

( ∞∑
k=0

µkxk

)
=
∞∑
k=0

λkµkxk

with
‖T‖op = sup

k
|λk|

If further we have λk → 0, this normal T is also compact.

Finite Dimensional Kernel: Let T ∈ K(H,H), where H is a Hilbert space. Then for all
λ 6= 0,

dim(ker(λI − T )) <∞

This theorem has the following consequence for T ∈ K(H,H): For λ 6= 0, (λI − T )H is
closed in H.

Injective ⇐⇒ Surjective: Let T ∈ K(E,E) for a Banach space E. Then λI − T is injective
if and only if it is surjective.

Spectrum of a Compact Operator: Let E be a Banach space and T ∈ K(E,E). Then every
element of σ(T ), with the possible exception of 0, is an eigenvalue.

Eigenvalues of a Compact Operator: Let E be a Banach space with dimE = ∞ and T ∈
K(E,E). Then the eigenvalues of T are countable and form a null sequence (i.e. converging
to 0).

Range of a Compact Operator: The range of a compact operator is separable.

At Least One Non-zero Eigenvalue: Let T ∈ K(H,H), where H is a Hilbert space, be a
non-zero and self-adjoint operator. Then, it has at least one non-zero eigenvalue, which is
one of the following:

M = sup
‖x‖=1

(Tx|x) m = inf
‖x‖=1

(Tx|x)
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Spectral Decomposition of Compact Self-Adjoint Operators: Let T ∈ K(H,H), where
H is a Hilbert space, be self-adjoint. Then there exists an orthonormal sequence {fn} such
that

Tx =

∞∑
n=1

λn (x|fn) fn

where {λn} is the sequence of eigenvalues of T counting multiplicities.

Spectral Mapping Theorem: Let T ∈ K(H,H), where H is a Hilbert space, be self-adjoint.

For any entire function f(z) =
∞∑
k=0

akz
k on C, one has

σ(f(T )) = f(σ(T ))

where f(T ) is interpreted as

f(T ) =
∞∑
k=0

akT
k

2.4. Positive Operators

Take K = C.

Positive Operator: Let T ∈ L(H,H), where H is a Hilbert space. T is a positive operator if
for all x ∈ H we have (Tx|x) ≥ 0. Therefore we say S ≤ T if and only if ((T − S)x|x) ≥ 0
for all x ∈ H, i.e. T − S ≥ 0.

Positive Operators in RN with K = R: In this case the term �positive operator� corresponds
to positive semi-de�nite (square) matrices, in which case we have all eigenvalues positive.
The converse is also true if the matrix is symmetric (self-adjoint), i.e. symmetric (self-
adjoint) operators are positive. However, not all positive operators are self-adjoint.

Positive Operators in CN with K = C: In this case, an operator (matrix) is positive if and
only if all its eigenvalues are positive.

Positive Operators in Arbitrary H with K = C: In this case, the followings hold:

1. An operator T is positive if and only if it is self-adjoint and σ(T ) ⊂ [0,∞).

2. If T ≥ 0, then Tn ≥ 0 for all n ∈ N+.

3. If S, T ≥ 0, both are self-adjoint and they commute, i.e. ST = TS, then ST ≥ 0.
Both of them being positive is not enough.

4. If T ≥ 0, then ‖Tx‖2 ≤ ‖T‖op (Tx|x).
5. Let Tn ∈ L(H,H) be an operator sequence such that

0 ≤ T1 ≤ T2 ≤ · · · ≤ I

Then there exists some T ∈ L(H,H) such that for all x ∈ H, limTnx = Tx

Existence of Square Root: Let T ∈ L(H,H) for a complex Hilbert space H, and T ≥ 0.
Then there exists a unique S ∈ L(H,H) such that S ≥ 0 and S2 = T . Moreover, there
exist polynomials pn such that pn(T )x→ Sx for every x ∈ H whenever ‖T‖op ≤ 1.
The existence of these polynomials guarantee that S and T commute.
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2.5. Spectral Decomposition of Compact Operators

Spectral Decompotision of Compact Operators: Let T ∈ K(H,H), where H is a Hilbert
space. Then there exist orthonormal sequences {en}, {fn} and a non-negative scalar se-
quence λn such that for all x ∈ H,

Tx =

∞∑
n=0

λn (x|en) fn

Density of Finite Dimensional Operators: Let F(H,H) denote the set of all linear and
continuous operators with �nite dimensional range, and recall that they are all compact.
Then F(H,H) = K(H,H), meaning �nite dimensional operators are dense in K(H,H).

2.6. Polar Decomposition

Partial Isometry: Let H be a Hilbert space. An operator U ∈ L(H,H) is called a partial
isometry if for some linear subspace M ⊂ H, U |M is an isometry and U |M⊥ ≡ 0.
If M = H, then U is an isometry, and hence every isometry is a partial isometry.

Polar Decomposition: Let H be a Hilbert space and T ∈ L(H,H). Then there exist unique
P,U ∈ L(H,H) such that P ≥ 0 and U is a partial isometry on RanP such that T = UP
and P = U∗T . Moreover, if T is invertible, then so is P and U is unitary. Here, P is
de�ned to be

P = |T | =
√
T ∗T
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3. Some Applications

3.1. Fourier Series

C[−π,π] space: Let function space C[a, b] (real or complex valued) in general can be used to
represent all signals with period b− a. As a prototype, we choose C[−π, π], because sines,
cosines and complex exponentials have period 2π. We also equip it with the usual L2 inner
product and its induced norm:

(f |g) =
π∫
−π

f(t)g(t)dt ‖f‖ =

 π∫
−π

|f(t)|2dt

1/2

Bases: In this space, the following sequences are orthonormal:{
1√
2π
eint︸ ︷︷ ︸

en(t)

}∞
n=−∞

{
1√
2π︸ ︷︷ ︸

u0(t)

}
∪
{

1√
π
cos(nt)︸ ︷︷ ︸
un(t)

}∞
n=1

∪
{

1√
π
sin(nt)︸ ︷︷ ︸
vn(t)

}∞
n=1

These two sets of orthogonal sequences are actually equivalent. One uses {en(t)} if K = C,
the other one if K = R.
Using Stone-Weierstrass Approximation Theorem, or its version on trigonometric
polynomials, we can show that these sets are indeed orthonormal bases in C[−π, π]

Fourier Coe�cients: Traditionally, one does not work with the actual coordinates in these
orthonormal bases but on the following de�nitions, called the Fourier coe�cients, which
are the multipliers of sines and cosines directly:

a0 =
1
2π

π∫
−π

f(t)dt

an = 1
π

π∫
−π

f(t) cos(nt)dt for n > 1

bn = 1
π

π∫
−π

f(t) sin(nt)dt for n > 1


⇒ f(t) = a0 +

∞∑
n=1

an cos(nt) +
∞∑
n=1

bn sin(nt)

Completion to L2[−π,π]: However, this inner product space is not complete. It can be com-

pleted to a Hilbert space: ̂C[−π, π] is isometrically isomorphic to L2[−π, π], a measure

space, with the following domain:

L2[−π, π] = {[f ]∼ | f : [−π, π]→ K,
π∫
−π

|f(t)|2dm(t) <∞}

Here we need a couple of clari�cations:

The di�erential dm(t): This di�erential notation in the integral means that the integral
is a Lebesgue integral, which generalized Riemann integrals. The inner product and
norm integrals are again adapted to be Lebesgue integrals as well:

(f |g) =
π∫
−π

f(t)g(t)dm(t) ‖f‖ =

 π∫
−π

|f(t)|2dm(t)

1/2

18 Contents



Introduction to Hilbert Spaces - Cheat Sheet O§ul Can Yurdakul

The equivalence relation ∼: The Lebesgue integral disregards �small sets�, such as
countably in�nite or �nite sets in the domain of integration. Therefore when consid-
ering functions, we must not take them as they are (which are modi�able at countably
many point, Lebesgue integral just �won't care �), but instead as equivalence classes

with the following de�nition:

f ∼ g ⇐⇒
π∫
−π

|f(t)− g(t)|dm(t) = 0

Meaning if Lebesgue integral sees no di�erence, so won't we.

Convergence: We have that {en} is an orthonormal basis for the separable Hilbert space
L2[−π, π]. This means that the partial sum sequences converge for each f ∈ L2[−π, π]:

π∫
−π

∣∣∣∣ n∑
k=−n

(f |ek) ek(t)− f(t)
∣∣∣∣2dm(t) −→

n
0

But this is convergence in L2-norm, which does not give us point-wise convergence.

Jump Discontinuities: If f(t) has a jump discontinuity at some x0 and the left and right

�derivatives� exits, then the Fourier series converges point-wisely to
f(x+0 )+f(x−0 )

2 , which is
the average of the left and right limits.
In particular, if f ′(x0) exists at some x0, then the Fourier series converges point-wisely to
f(x0).

Uniform Convergence and Fejér's Theorem: We may even want the partial sum sequence
∞∑

n=−∞
(f |en) en(t) to converge uniformly. For uniform convergence, in one sense, we have

Fejér's Theorem:

Let f ∈ L2[−π, π] such that ‖f‖∞ <∞. Then the partial sum sequence
∞∑

n=−∞
(f |en) en(t)

converges uniformly to f(t) in Cesàro's sense, meaning the running average of the partial
sum sequence converges uniformly:

1

N + 1

N∑
n=0

n∑
k=−n

(f |en) en(t) −−−−−−→
uniformly

f(t)

Summary:

1) For f ∈ L2[−π, π], then the Fourier partial sums sequence
n∑

k=−n
(f |ek) ek converges to

f in L2-norm.

2) The running averages of the partial sum sequence converges to f uniformly, which
implies point-wise convergence and under certain additional assumptions (such as
absolute convergence) L2 convergence.

3) Similar arguments lead to theorems on L2[a, b] and L2π
2 (R), the set of 2π-periodic

functions on all R.
4) If f and f ′ are piece-wisely continuous, then the Fourier partial sums sequence con-

verges to the average of left and right limits point-wisely, and in L2 sense.

5) If f is continuous and f ′ is piece-wisely continuous, then the Fourier partial sums
sequence converges to f uniformly.

6) If f is di�erentiable, then the Fourier partial sums sequence converges to f uniformly.
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3.2. Hilbert-Schmidt Operators

Hilbert-Schmidt Operators: Let H be a separable Hilbert space. T ∈ L(H,H) is called a

Hilbert-Schmidt operator if
∞∑
n=1
‖Ten‖2 <∞ for some orthonormal basis {en}.

The choice of the orthonormal basis in the de�nition is not important, as the sum given is
it can be shown that the sum is the same for any given basis.

Compactness: Hilbert-Schmidt operators are compact. Therefore the sum
∞∑
n=1
‖Ten‖2 is exactly

equal to the sum
|λk|2∑
k=1

. This yields the

Alternative De�nition: An operator T ∈ L(H,H) is a Hilbert-Schmidt operator if and only
if the eigenvalue sequence counting multiplicities of |T | is a member of `2.

Hilbert Space of HS Operators: From this de�nition, one can de�ne an inner product on
the Hilbert-Schmidt operators themselves, given by

(T |S) =
∞∑
i=1

λiµi

where {λi} and {µi} are the eigenvalue sequences of |T | and |S| counting multiplicities,
respectively.

Schatten Classes: The class of Hilbert-Schmidt operators are denoted by S2 ⊂ K(H,H). We
can further generalize this idea of treating operators as spaces themselves, by characterizing
each operator by its eigenvalue sequence counting multiplicities: One says an operator T
belongs to Sp if its absolute eigenvalue sequence counting multiplicities, {λi}, is in `p.
These classes are called as Schatten classes. In this sense,

� K(H,H) can be identi�ed with {λi} ∈ c0, and
� L(H,H) can be identi�ed with {λi} ∈ `∞.

3.2.1. An Application to Fredholm Integral Equations

Fredholm Integral Equations: There are three types of such equations, where we try to solve
for u(x) for x ∈ [a, b]:

b∫
a

k(x, t)u(t)dt = µu(x) Homogenous Type

b∫
a

k(x, t)u(t)dt = f(x) Inhomogenous Type

b∫
a

k(x, t)u(t)dt = µu(x) + f(x) General Type

One can represent these integral equations using an operator: Take K = R, and let T ∈
L(L2[a, b], L2[a, b]) and

(Tu)(x) =

b∫
a

k(x, t)u(t)dt
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Then the above equations become

Tu = µu Homogenous Type

Tu = f Inhomogenous Type

Tu = µu+ f General Type

Facts:

1. T is linear, and k(x, t) is called �the kernel function of T �.

2. If
b∫
a

b∫
a
|k(x, t)|2dtdx <∞, then T is a Hilbert-Schmidt operator.

3. T is self-adjoint if and only if k(x, t) = k(t, x).

Path to solution: Solving homogenous and inhomogenous Fredholm integral equations reduces
to �nding the eigenvectors of T , or �nding ker(I − T ) (after normalization).

Fredholm Operator: The operator I − T , where T is such as above and compact, is called a
Fredholm operator.

Fredholm Alternative Theorem: If T ∈ K(H,H), then exactly one of the followings hold:

(a) (I − T )x = y has a unique solution x for each given y, and (I − T ) is invertible.
(b) ker(I − T ) 6= {θ}, meaning I − T is not injective.

Further, if we have ‖T‖op < 1, then certainly we are in case (a).

3.2.2. An Application to Numerical Analysis: Galerkin's Method

Problem Setting: Let T ∈ K(H,H), where H is a separable Hilbert space, say with an or-
thonormal basis {en}∞n=1

2. We are trying to solve the equation (I − T )x = y for x with a
given y.

Approach: We solve the problem in an n-dimensional subspace of H, spanned by Gn =
〈e1, . . . , en〉 (WLOG). So, if Pn : H → Gn is the projection onto Gn, we are now try-
ing to solve

(I − T ) Pnx︸︷︷︸
xn

= Pny

where xn =
n∑
k=1

c
(n)
k ek. In this case, the problem reduces to �nding the coe�cients c

(n)
k .

Therefore, one needs to solve

c
(n)
j −

n∑
k=1

c
(n)
k (Tek|ej) = (y|ej) for j = 1, 2, ..., n

So we have n equations in n unknowns c
(n)
1 , c

(n)
2 , ..., c

(n)
n .

Convergence: If T is self-adjoint and compact with 0 < mI ≤ (I − T ) for some m ∈ R+, then
x → xn in norm where x is the true solution, i.e. ‖xn − x‖ −→

n
0. If ‖x‖op < 1, the order

condition is automatically satis�ed.

2H is not actually given to be in�nite dimensional in the notes, but to me it made more sense to take it so.
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A. Internet Look-ups

Baire's Theorem: If a space S is either a complete metric space or a locally compact T2-space,
then the intersection of every countable collection of dense open subsets of S is necessarily
dense in S. [Wolfram]

T2-space: A topological space ful�lling the T2 axiom: Any two points have disjoint neighbor-
hoods. [Wolfram]

Locally Compact: A topological space X is locally compact if every point has a neighborhood
which is itself is contained in a compact set. [Wolfram]

Operator Norm: Let V,W be two normed spaces over the same �eld, and A : V →W a linear
map. A is continuous if and only if for some c ∈ K we have

∀v ∈ V ‖Av‖ ≤ c‖v‖

that is to say that A is bounded. Then, the equivalent de�nitions of operator norm are
given as follows:

‖A‖op = inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖ for all v ∈ V }
= sup{‖Av‖ : ‖v‖ ≤ 1 for v ∈ V }
= sup{‖Av‖ : ‖v‖ < 1 for v ∈ V }
= sup{‖Av‖ : ‖v‖ = 1 or 0 for v ∈ V }
= sup{‖Av‖ : ‖v‖ = 1 for v ∈ V } (if and only if V 6= {θ})

= sup

{
‖Av‖
‖v‖

: v 6= θ for v ∈ V
}

(if and only if V 6= {θ})

Properties:

1. Operator norm is a norm on the space of all bounded operators from V and W ,
meaning all the norm axioms hold.

2. ‖Av‖ ≤ ‖A‖op‖v‖ for all v ∈ V .
3. For maps A : V → W and B : W → X, we have ‖BA‖op ≤ ‖B‖op‖A‖op, where BA

denotes composition.

[Wikipedia]
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https://mathworld.wolfram.com/BaireCategoryTheorem.html
https://mathworld.wolfram.com/T2-Space.html
https://mathworld.wolfram.com/LocallyCompact.html
https://en.wikipedia.org/wiki/Operator_norm
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