MATH422 Cheat Sheet

Oğul Can Yurdakul

Last Updated: 27/06/2021

Contents

1 Topology of Subsets of Euclidean Spaces 1
1.1 Open and Closed Subsets of Sets in \mathbb{R}^{n}. 1
1.2 Continuous Maps . 2
1.3 Connectedness . 3
1.4 Compactness . 3
1.5 Homeomorphisms \& Quotient Maps . 4

2 Topological Surfaces 5
2.1 Arcs, Disks, and 1-Spheres . 5

2.3 Surfaces via Gluing . 6
2.4 Properties of Surfaces . 8
2.5 Connected Sum and Classification of Compact Connected Surfaces 8

3 Simplicial Complexes 9
3.1 Affine Preliminaries. 9
3.2 Convex Sets \& Simplices . 10
3.3 Simplicial Complexes . 12
3.4 Simplicial Surfaces . 14
3.5 The Euler Characteristic . 14
3.6 Simplicial Curvature and the Simplicial Gauss-Bonnet Theorem 15

1 Topology of Subsets of Euclidean Spaces

1.1 Open and Closed Subsets of Sets in \mathbb{R}^{n}

Balls:

Open: Let $p \in \mathbb{R}^{n}$ and $r>0$. The open ball centered at p with radius r is

$$
\mathrm{O}_{r}\left(p ; \mathbb{R}^{n}\right)=\left\{x \in \mathbb{R}^{n}:\|x-p\|<r\right\}
$$

Relatively Open: Let $p \in A \subset \mathbb{R}^{n}$ and $r>0$. The open ball in A of radius r is

$$
\mathrm{O}_{r}(p ; A)=\{x \in A:\|x-p\|<r\}=\mathrm{O}_{r}\left(p ; \mathbb{R}^{n}\right) \cap A
$$

Closed: Let $p \in \mathbb{R}^{n}$ and $r>0$. The closed ball centered at p with radius r is

$$
\mathrm{C}_{r}\left(p ; \mathbb{R}^{n}\right)=\left\{x \in \mathbb{R}^{n}:\|x-p\| \leq r\right\}
$$

Relatively Closed: Let $p \in A \subset \mathbb{R}^{n}$ and $r>0$. The closed ball in A of radius r is

$$
\mathrm{C}_{r}(p ; A)=\{x \in A:\|x-p\| \leq r\}=\overline{\mathrm{O}_{r}(p ; A)}
$$

Open/Closed Set: A set $A \subset B$ is said to be open in B if for every $p \in A$, there exists some $\varepsilon_{p}>0$ real such that $\mathrm{O}_{p}\left(\varepsilon_{p} ; B\right) \subset A$. A set $A \subset B$ is said the be closed in B if its complement in B is open in B. Setting $B=\mathbb{R}^{n}$, we obtain the regular open and closed set definitions.
For closed and open sets in \mathbb{R}^{n}, we have

- \varnothing and \mathbb{R}^{n} are both open and closed.
- Finite intersection of open sets is open.
- Finite union of closed sets is closed.
- Arbitrary union of open sets is open.
- Arbitrary intersection of closed sets is closed.

Relative Opennes/Closedness as Intersection: Let $A \subset \mathbb{R}^{n}$. A subset $S \subset A$ is open/closed in A if and only if there exists some open/closed subset $U \subset \mathbb{R}^{n}$ such that $S=U \cap A$.
If in particular A is open, then $U \cap A$ is open, and so relative openness is the same as general openness.

Open Neighbourhood: If $p \in A$, then an open neighbourhood of p in A is an open subset of A containing p.
Producing Open Rectangles: For $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$,
i) for $U \underset{\text { open }}{\subset} A$ and $V \underset{\text { open }}{\subset} B$, then $U \times V$ is an open subset of $A \times B$.
ii) If $W \subset A \times B$ is an open subset of $A \times B$, then for every $\left(p_{1}, p_{2}\right) \in W$ there exist reals $\varepsilon_{A}, \varepsilon_{B}>0$ such that $\mathrm{O}_{\varepsilon_{A}}\left(p_{1} ; A\right) \times \mathrm{O}_{\varepsilon_{B}}\left(p_{2} ; B\right) \subset W$.

Closure: There exists a smallest closed subset containing a given subset. Let $D \subset A \subset \mathbb{R}^{n}$. The closure of D in A is defined to be the intersection of all closed subsets of A containing D, denoted \bar{D} or sometimes $\mathrm{Cl}_{A}(D)$.

Open/Closed Maps: Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}$ and $f: A \rightarrow B$. Then f is said to be an open map if for every $U \underset{\text { open }}{\subset} A, f(U)$ is also open in B. Similarly, f is said to be a closed map if for every $C \underset{\text { clsd }}{\subset} A, f(C)$ is also closed in B.

1.2 Continuous Maps

Continuity: Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$, and $f: A \rightarrow B$ be a map. The map f is continuous if with Open Preimage: for every $U \underset{\text { open }}{\subset} B$, the inverse image $f^{-1}(U)$ is open in A :

$$
U \underset{\text { open }}{\subset} B \Rightarrow f^{-1}(U) \underset{\text { open }}{\subset} A
$$

with $\varepsilon-\delta$: for every $p \in A$ and every $\varepsilon>0$, there exists some $\delta>0$ such that if $x \in A$ with $\|x-p\|<\delta$ then $\|f(x)-f(p)\|<\varepsilon$. This means

$$
f\left(\mathrm{O}_{\delta}(p ; A)\right) \subset \mathrm{O}_{\varepsilon}(f(p) ; B)
$$

with Open Neighbourhoods: for every $p \in A$ and every subset $U \underset{\text { open }}{\subset} B$ containing $f(p)$, there exists $V \underset{\text { open }}{\subset} A$ containing p such that $f(V) \subset U$.

Continuity of Restrictions: Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}$ and $f: A \rightarrow B$. Suppose that $A=A_{1} \cup A_{2}$ and $\left.f\right|_{A_{1}}$ and $\left.f\right|_{A_{2}}$ are both continuous. If A_{1} and A_{2} are both open or both closed in A, then f is continuous.

Pasting Lemma: A corollary to this is that we can define an overall function $f: A \rightarrow B$ in terms of two functions, say $f_{1}: A_{1} \rightarrow B$ and $f_{2}: A_{2} \rightarrow B$, defined on both open or both closed subsets $A=A_{1} \cup A_{2}$; given that f_{1} and f_{2} agree on the intersection $A_{1} \cap A_{2}$.

Continuity of Component Functions: Let A, B_{1}, \ldots, B_{k} be subsets of a Euclidean space and $f: A \rightarrow B_{1} \times \cdots \times B_{k}$ a function. Denote with $f_{i}: A \rightarrow B_{i}$ the component functions of f, which can also be written as $\pi_{i} \circ f$ where π_{i} is the projection function onto B_{i}. Then f is continuous if and only if all its f_{i} component functions are continuous.

1.3 Connectedness

(Dis)Connected Sets: Let $A \subset \mathbb{R}^{n}$. A is said to be disconnected if we can write $A=A_{1} \cup A_{2}$ where $A_{1} \cap A_{2}=\varnothing$ with A_{1} and A_{2} both open in A. If A is not disconnected, then we say it is connected.
Equivalently,

- A is connected if A cannot be expressed as a disjoint union of two of its closed subsets.
- A is connected if the only subsets of A that are both open and closed are A and \varnothing.

Component: Let $A \subset \mathbb{R}^{n}$. Then $C \subset A$ is a component of A if it is non-empty, connected and not a proper subset of a connected subset of A.

Intervals: Let $A \subset \mathbb{R}$. Then A is connected if and only if it is an interval (in the most general sense).

Continuous Image: Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$, and $f: A \rightarrow B$ a continuous map. If A is connected, so is $f(A)$.
"Continuous image of a connected set is connected."
This fact can be used to prove the Intermediate Value Theorem.
Path Connectedness: Let $A \subset \mathbb{R}^{n}, x, y \in A$. A path from x to y is a continuous map $c:[0,1] \rightarrow A$ such that $c(0)=x$ and $c(1)=y . A$ is said to be path connected if there exists a path between any $x, y \in A$.
A path connected set is connected, but the converse statement need not hold.

1.4 Compactness

Cover, Subcover, Finite Cover, Open Cover: Let $A \subset \mathbb{R}^{n}$. A cover \mathcal{U} of A is a collection of subsets of A whose union gives all of A.
If $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ is a cover of A indexed by some index set I, then a subcover of \mathcal{U} is a subcollection of \mathcal{U} that is itself a cover of A, i.e. it is of the form $\left\{U_{j}\right\}_{j \in J}$ where $J \subset I$. A finite cover is one that is constituted of finitely many sets.
An open cover of A constitutes of open subsets of A.
(Un)Bounded Sets: Let $A \subset \mathbb{R}^{n}$. Then A is bounded if there exists some non-negative real r such that $A \subset \mathrm{O}_{r}\left(0_{n} ; \mathbb{R}^{n}\right)$.

Compact Sets: Let $A \subset \mathbb{R}^{n}$. We say that A is compact if every open cover of A has a finite subcover.
The union of finitely many compact sets is compact.
A compact subset of a compact set is closed. A closed subset of a compact set is compact. Compact sets are bounded.

Heine-Borel Theorem: A set $A \subset \mathbb{R}^{n}$ is compact if and only if it is closed in \mathbb{R}^{n} and bounded. The proof of this theorem uses

- A closed interval in \mathbb{R} is compact.
- The product of finitely many compact subsets of a Euclidean space is compact.

Continuous Image: Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$, and $f: A \rightarrow B$ a continuous map. If A is compact, so is $f(A)$.
"Continuous image of a compact set is compact."
This fact can be used to prove the Extreme Value Theorem.

1.5 Homeomorphisms \& Quotient Maps

Homeomorphism: Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}$ and $f: A \rightarrow B . f$ is a homeomorphism (or a topological equivalence) if it is a continuous bijection with continuous inverse. Note that f^{-1} is continuous if and only if f is an open map.

Partition: Let $A \subset \mathbb{R}^{n}$. A collection $\mathcal{P}=\left\{P_{i}\right\}_{i \in I}$ of subsets of A is called a partition if $\bigcup_{i \in I} P_{i}=A$ and $P_{i} \cap P_{j}=\varnothing$ whenever $i \neq j$.
Quotient Map: Let $A, B \subset \mathbb{R}^{n}$. A map $q: A \rightarrow B$ is called a quotient map if it is surjective and $U \underset{\text { open }}{\subset} B$ if and only if $q^{-1}(U) \underset{\text { open }}{\subset} A$.
Note that by the second condition, a quotient map is by definition, automatically continuous.

Identification Space: If $X \subset \mathbb{R}^{n}$ and $\mathcal{P}=\left\{P_{i}\right\}_{i \in I}$ is a partition of X, then $Y \subset \mathbb{R}^{m}$ is an identification space of X and \mathcal{P} if there is a quotient map $q: X \rightarrow Y$ such that $\left\{q^{-1}(y): y \in Y\right\}=\mathcal{P}$.
The interpretation of this definition is that the quotient map given collapses each part of X in \mathcal{P} to a single point, and each point in Y is mapped on by some part of X, almost as if

$$
\left.P_{i} \stackrel{b_{i j}}{b} y \quad \quad \text { (but not under } q!\right)
$$

Continuity \& Quotient Maps: Let X, Y and Z be subsets of Euclidean spaces, $f: X \rightarrow Y$ a quotient map and $g: Y \rightarrow Z$. Then g is continuous if and only if $g \circ f$ is continuous.

Homeomorphic Identification Spaces: Let $X \subset \mathbb{R}^{n}$ and \mathcal{P} be a partition of X. If $Y \subset \mathbb{R}^{m}$ and $Z \subset \mathbb{R}^{k}$ are both identification spaces of X and \mathcal{P}, then we have $Y \approx Z$, meaning Y and Z are the same spaces up to homeomorphism.
"Sewing" Sets Together: Let $X, Y \subset \mathbb{R}^{n}$ be disjoint sets and $X^{\prime} \subset X, Y^{\prime} \subset Y$. If $h: X^{\prime} \rightarrow Y^{\prime}$ is a homeomorphism, then we can define a partition $\mathcal{P}(h)$ on $X \cup Y$, which consists of pairs $\{x, h(x)\}$ for all $x \in X^{\prime}$ and $\{z\}$ for all $z \in\left(X \backslash X^{\prime}\right) \cup\left(Y \backslash Y^{\prime}\right)$. A set $W \subset \mathbb{R}^{m}$ is said to be the result of attaching X and Y through h, denoted $X \cup_{h} Y$, if W is the identification space of $X \cup Y$ and $\mathcal{P}(h)$.
Continuous Maps and Compactness: Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}$ and $f: A \rightarrow B$ a continuous map. Then if A is compact
i) then f is a closed map.
ii) and f is a surjection, then f is a quotient map.
iii) and f is a bijection, then f is a homeomorphism.

2 Topological Surfaces

2.1 Arcs, Disks, and 1-Spheres

Basic Definitions: We will give some specific names to the following sets as follows:

$$
\begin{aligned}
D^{2} & =\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\} & \left(\text { Standard Unit Disk in } \mathbb{R}^{2}\right) \\
\text { Int } D^{2} & =\left\{x \in \mathbb{R}^{2}:\|x\|<1\right\} & \text { (Standard Open Disk in } \mathbb{R}^{2} \text {) } \\
S^{1} & =\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}=\partial D^{2} & \text { (Unit Circle in } \mathbb{R}^{2} \text {) }
\end{aligned}
$$

Then
Arc: A subset of \mathbb{R}^{n} that is homeomorphic to the interval $[-1,1]$ is called an arc.
Disk: A subset of \mathbb{R}^{n} that is homeomorphic to D^{2} is called a disk.
1-Sphere: A subset of \mathbb{R}^{n} that is homeomorphic to S^{1} is called a 1 -sphere.
Invariance of Domain: Let $U \subset \mathbb{R}^{n}$ be homeomorphic to \mathbb{R}^{n}. Then U must be open in \mathbb{R}^{n}.
Non-homeomorphic Dimensions: For n and m distinct positive integers, $\mathbb{R}^{n} \not \approx \mathbb{R}^{m}$.
Boundaries and Interiors of Disks: Let $B \subset \mathbb{R}^{n}$ be a disk, and $h_{1}, h_{2}: D^{2} \rightarrow B$ be homeomorphisms. Then

$$
h_{1}\left(S^{1}\right)=h_{2}\left(S^{1}\right) \quad \text { and } \quad h_{1}\left(\operatorname{Int} D^{2}\right)=h_{2}\left(\operatorname{Int} D^{2}\right)
$$

and so, independent from the homeomorphism generating the disk, we can make the following definitions: For any homeomorphism $h: D^{2} \rightarrow B$

Interior of a Disk: $\operatorname{Int} B=h\left(\operatorname{Int} D^{2}\right)$
Boundary of a Disk: $\partial B=h\left(\partial D^{2}\right)=h\left(S^{1}\right)$
Boundaries and Interiors of Arcs: A similar fact can be proven about arcs and their boundaries as well: Their interior and boundaries are independent from the homeomorphism generating them. So, for any homeomorphism $h:[-1,1] \rightarrow A$

Interior of an Arc: $\operatorname{Int} A=h(\operatorname{Int}[-1,1])=h((-1,1))$
Boundary of an Arc: $\partial A=h(\partial[-1,1])=h(\{-1,1\})$
Identity Outside of a Disk: Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a homeomorphism. h is called as the identity outside a disk if there is some disk $B \subset \mathbb{R}^{2}$ such that $\left.h\right|_{\mathbb{R}^{2} \backslash A}=\mathrm{id}$.

Schönflies Theorem: Let $C \subset \mathbb{R}^{2}$ be a 1 -sphere. Then there is a homeomorphism $H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $H\left(S^{1}\right)=C$ and H is the identity outside a disk.
Corollary:
i) Jordan Curve Theorem: The set $\mathbb{R}^{2} \backslash C$ has precisely 2 components, one bounded and another unbounded.
ii) The union of C and the bounded component of $\mathbb{R}^{2} \backslash C$ is a disk, of which C is the boundary.
This second fact does not hold in dimensions higher than 2, as seen by the counter example of the trefoil knot.
iii) Let $B_{1}, B_{2} \subset \mathbb{R}^{2}$ be two disks. Then there is a homeomorphism $H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $H\left(B_{1}\right)=B_{2}$ and H is the identity outside a disk.

2.2 Surfaces in \mathbb{R}^{n}

(Topological) Surface: A subset $Q \subset \mathbb{R}^{n}$ is called a (topological) surface if each point $p \in Q$ has an open neighbourhood that is homeomorphic to the open unit dist int D^{2}.
"Sameness" of Surfaces: Two surfaces Q_{1} and Q_{2} are considered to be the same if they are homeomorphic.

2.3 Surfaces via Gluing

Polygonal Disk: A polygonal disk is a disk that sits in some plane in R^{n} whose boundary is a polygon.

Gluing Scheme: If D is a polygonal disk, a gluing scheme \mathcal{S} for the edges of D is a labelling of each edge of F with an arrow and a letter, where each used letter appears on precisely two edges.

Affine Linear Map: An affine linear map $L:[a, b] \rightarrow[c, d]$ is a map that satisfies

$$
L((1-t) a+t b)=(1-t) L(a)+t L(b) \quad \text { for } t \in[0,1]
$$

Edge Sets: Let D be a polygonal disk and \mathcal{S} be a gluing scheme on the edges of D. Then, \mathcal{S} partitions the edges of D into 2 -element sets where the edges matched under \mathcal{S} are paired, say E_{1}, \ldots, E_{k}. These are called as the edge sets.

Vertex Sets: For each edge set, we have two affine linear maps that send one edge to the other such that the end points are matched according to the directions set by \mathcal{S}. Of course, one is the inverse of the other, so we can represent the mapping of each edge set with a single L_{i} by choosing one of these mappings, and the other one is L_{i}^{-1}. Then define the following partition:

$$
[x]=\left\{y \in D: y=L_{i}^{ \pm 1} \circ L_{j}^{ \pm 1}(x) \text { for some } i, j \in\{0,1, \ldots, k\}\right\}
$$

where we write L_{0} for the identity map. These sets, which form a partition of the vertices of D, are called the vertex sets, denoted $\mathcal{P}(\mathcal{S})$ or $\mathcal{P}\left(L_{1}, \ldots, L_{k}\right)$.

Constructing Surfaces: Let D be a polygonal disk and \mathcal{S} a gluing scheme on its edges. A subset $X \subset \mathbb{R}^{n}$ is said to be obtained from D and \mathcal{S} if X is an identification space of D and $\mathcal{P}(\mathcal{S})$, that is, there is a quotient map $q: D \xrightarrow{\text { surj }} X$ such that if $x, y \in D$ are points, then $q(x)=q(y)$ if and only if x and y are in the same set in $\mathcal{P}(\mathcal{S})$.
For each polygonal disk D and gluing scheme \mathcal{S} on D, there is a surface $Q \subset \mathbb{R}^{n}$ that is obtained from D and \mathcal{S}.

Compact Connected Surfaces via Gluing: Let $Q \subset \mathbb{R}^{n}$ be a compact connected surface. Then there is a polygonal disk D and a gluing scheme \mathcal{S} for the edges of D such that Q is obtained from D and \mathcal{S}.

This fact is proved based on another statement asserting any surface can be triangulated. See Section 3 for more.

Various Important Surfaces and Their Gluing Schemes:

Möbius Strip: $M^{2} . M^{2}$ is not really a surface as it has a boundary, but it appears within many important surfaces, so it is mentioned here.

Sphere: S^{2}, no need to elaborate. Torus: T^{2}

Figure 2.4.2

Figure 2.4.3
E. Bloch

Klein Bottle: K^{2}

(i)

(ii)

Figure 2.4.9

Figure 2.4.10
E. Bloch

Projective Plane: P^{2}

(i)

Figure 2.4.11
E. Bloch

The removal of an open disk from P^{2} yields M^{2} :

$$
P^{2} \backslash \operatorname{int} B \approx M^{2}
$$

This means that we can form a P^{2} using an M^{2} and a disk D^{2} via a homeomorphism of their boundaries.

2.4 Properties of Surfaces

Compactness: Any surface Q obtained from a polygonal disk by gluing is compact, as they are the continuous images (via the quotient map) of the compact D^{2}. So, any compact and connected surface is compact.

Oritentability: A surface is orientable if it does not contain a Möbius strip. It is non-orientable if it does.

Connectedness:

Around Points: Let Q be a surface and $q \in Q$. Then q has an open neighbourhood in Q which is path connected.
Overall: A surface in \mathbb{R}^{n} is connected if and only if it is path connected.

2.5 Connected Sum and Classification of Compact Connected Surfaces

Connedted Sum: Let Q_{1} and Q_{2} be compact and connected surfaces. For each, choose a disk B_{1} and B_{2}, respectively. Let $h: \partial B_{1} \rightarrow \partial B_{2}$ be a homeomorphism. The attaching space

$$
\left(Q_{1} \backslash \operatorname{int} B_{1}\right) \cup_{h}\left(Q_{2} \backslash \operatorname{int} B_{2}\right)
$$

is called the connected sum of Q_{1} and Q_{2}, denoted $Q_{1} \# Q_{2}$.
Exitence and Uniqueness upto Homeomorphism: This attaching space indeed exists and is a surface in some \mathbb{R}^{n}. Any two surfaces obtained in such a way are homeomorphic.
Basic Properties: Let A, B and C be compact and connected surfaces. Then
i) $A \# B \approx B \# A$
ii) $(A \# B) \# C \approx A \#(B \# C)$
iii) $A \# S^{2} \approx A$

Notice that these properties yield a commutative group-like structure, where S^{2} acts like the identity. We are only missing the inverses of each element. This algebraic structure is called a commutative semigroup. The next property illustrates that we indeed cannot have inverses, other than the trivial case.

Trivial "Inverses": Let A and B be compact connected surfaces. If we have $A \# B \approx S^{2}$, then $A \approx B \approx S^{2}$.

Connected Sum of Important Surfaces: The following homeomorphisms hold:
$P^{2} \# P^{2} \approx K^{2}$: This one is easy to prove. Remember that we are removing the interior of a disk while constructing the connected sum. Then, the two P^{2} after the removal of the said disk are homeomorphic to M^{2}, and then we are taking a homeomorphism of their boundary, which we had seen results in K^{2}.
$P^{2} \# T^{2} \approx P^{2} \# P^{2} \# P^{2}$
Orientability and Connected Sum: Let Q_{1} and Q_{2} be compact connected surfaces. Then $Q_{1} \# Q_{2}$ is orientable if and only if both Q_{1} and Q_{2} are orientable.

Clasification of Compact Connected Surfaces: Any compact connected surface is homeomorphic to a sphere, a connected sum of tori or a connected sum of projective planes, that is, it belongs to the following list:

- S^{2},
- $T^{2}, T^{2} \# T^{2}, T^{2} \# T^{2} \# T^{2}, \ldots$
- $P^{2}, P^{2} \# P^{2}, P^{2} \# P^{2} \# P^{2}, \ldots$

The surfaces in this list are all distinct (i.e. not homeomorphic to one another).

3 Simplicial Complexes

3.1 Affine Preliminaries

Affine Combination, Span, Subspace \& Independence: Let $x_{0}, \ldots, x_{k} \in \mathbb{R}^{n}$. An affine combination of these points, with coefficients $t_{0}, \ldots, t_{k} \in \mathbb{R}$ is the linear combination

$$
\sum_{i=0}^{k} t_{i} x_{i} \quad \text { with } \quad \sum_{i=0}^{k} t_{i}=1
$$

A set $X \subset \mathbb{R}^{n}$ is said to be an affine subspace if it is closed under affine combinations. The affine span of these points is the set of all affine combinations of these points:

$$
\operatorname{aspan}\left(x_{0}, \ldots, x_{k}\right)=\left\{y \in \mathbb{R}^{n}: y=\sum_{i=0}^{k} t_{i} x_{i} \text { with } \sum_{i=0}^{k} t_{i}=1\right\}
$$

The set $\left\{x_{0}, \ldots, x_{k}\right\}$ is said to be affinely independent if

$$
\sum_{i=0}^{k} t_{i} x_{i}=0_{n} \text { with } \sum_{i=0}^{k} t_{i}=0 \Rightarrow t_{i}=0 \forall i=0, \ldots, k
$$

Relation to Linear Independence: The set $\left\{x_{0}, \ldots, x_{k}\right\}$ is affinely independent if and only if the set $\left\{x_{1}-x_{0}, \ldots, x_{k}-x_{0}\right\}$ is linearly independent.

Uniqueness: The set $\left\{x_{0}, \ldots, x_{k}\right\}$ is affinely independent if and only if every y in the affine span of $\left\{x_{0}, \ldots, x_{k}\right\}$ is uniquely expressible as an affine combination of x_{0}, \ldots, x_{k}. The coefficients t_{i} in this affine combination are called the barycentric coordinates of y.

Affine Linear Map: Let $X \in \mathbb{R}^{n}$ be an affine subspace. A map $F: X \rightarrow \mathbb{R}^{m}$ is an affine linear map if it preserves affine combinations, that is if $x_{0}, \ldots, x_{k} \in X$ and $t_{0}, \ldots, t_{k} \in \mathbb{R}$ with $\sum_{i=0}^{k} t_{i}=1$, then

$$
F\left(\sum_{i=0}^{k} t_{i} x_{i}\right)=\sum_{i=0}^{k} t_{i} F\left(x_{i}\right)
$$

3.2 Convex Sets \& Simplices

Convex Sets: For $v, w \in \mathbb{R}^{n}$, let $\overline{v w}$ denote the line segment between v and w, given by

$$
\overline{v w}=\left\{x \in \mathbb{R}^{n}: x=t v+(1-t) w \text { for } 0 \leq t \leq 1\right\}
$$

A subset $X \subset \mathbb{R}^{n}$ is said to be convex if for every pair of points $v, w \in X$, the line segment $\overline{v w}$ is entirely contained in X.

Image Under Affine Linear Maps: For a convex set $C \subset \mathbb{R}^{n}$ and an affine linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the set $F(C)$ is also convex. This means that convexity is preserved under affine linear maps.

Convex Hull: It is intuitive (and true) that every set X is contained in some convex set, so we might ask for the smallest such set. Let $X \subset \mathbb{R}^{n}$ be any set. The convex hull of X, denoted conv X, is defined by

$$
\operatorname{conv} X=\bigcap\left\{C \subset \mathbb{R}^{n}: X \subset C \text { and } C \text { is convex }\right\}
$$

This set is indeed convex, and it a subset of every convex set containing X.
Simplex: Let $a_{0}, \ldots, a_{k} \in \mathbb{R}^{n}$ be affinely independent points where k is a non-negative integer.
Via Convex Hull: The simplex spanned by the points a_{0}, \ldots, a_{k} is the convex hull of these points, denoted

$$
\left\langle a_{0}, \ldots, a_{k}\right\rangle=\operatorname{conv}\left\{a_{0}, \ldots, a_{k}\right\}
$$

The points a_{0}, \ldots, a_{k} are called the vertices of the simplex, and $\left\langle a_{0}, \ldots, a_{k}\right\rangle$ is said to be k-dimensional, and called a k-simplex. This makes sense, given the linear independence relation above. Our $k+1$ many points give us a k-dimensional object.

Source

Via Affine Combinations: A simplex is equivalently expressed in terms of its vertices' affine combinations with an extra condition. Let $a_{0}, \ldots, a_{k} \in \mathbb{R}^{n}$ be affinely independent points, where $k \in \mathbb{N}^{+}$. Then

$$
\left\langle a_{0}, \ldots, a_{k}\right\rangle=\left\{x \in \mathbb{R}^{n}: x=\sum_{i=0}^{k} t_{i} a_{i} \text { with } \sum_{i=0}^{k} t_{i}=1 \text { AND } t_{i} \geq 0 \forall i\right\}
$$

again, these t_{i} coordinates are unique, and are called barycentric coordinates.

Unique Vertices: Let $\left\{a_{0}, \ldots, a_{k}\right\}$ and $\left\{b_{0}, \ldots, b_{p}\right\}$ be two sets of affinely independent points in \mathbb{R}^{n}. Then we have

$$
\left\langle a_{0}, \ldots, a_{k}\right\rangle=\left\langle b_{0}, \ldots, b_{p}\right\rangle \Rightarrow\left\{a_{0}, \ldots, a_{k}\right\}=\left\{b_{0}, \ldots, b_{p}\right\}
$$

This means that the set of vertices of a simplex uniquely determines the simplex.
Unique Affine Subspace: Let $\mu=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ be a k-simplex in \mathbb{R}^{n}. Then the affine subspace aspan $\left(a_{0}, \ldots, a_{k}\right)$ is the unique affine subspace (k-plane) containing μ.

Face of a Simplex: Let $\sigma=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ be a k-simplex in \mathbb{R}^{n}. A face of σ is the simplex generated by a non-empty subset of $\left\{a_{0}, \ldots, a_{k}\right\}$. If this subset is proper subset, then the corresponding face is called a proper face. A face of σ that is an r-simplex is called an r-face of σ.

Combinatorial Boundary: The combinatorial boundary of a k-simplex $\sigma=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ is the union of all the proper faces of σ.

$$
\operatorname{Bd} \sigma=\bigcup_{\tau \subsetneq\left\{a_{0}, \ldots, a_{k}\right\}}\langle\tau\rangle
$$

Mind the abuse of notation.

The combinatorial boundary, by this logic, is given as

$$
\begin{aligned}
\operatorname{Bd}\left\langle a_{0}, \ldots, a_{k}\right\rangle=\left\{x \in \mathbb{R}^{n}: x=\sum_{i=0}^{k} t_{i} a_{i} \text { with } \sum_{i=0}^{k} t_{i}=1\right. \\
\left.t_{i} \geq 0 \text { for some } i \text { and there exists } j \text { such that } t_{j}=0\right\}
\end{aligned}
$$

Notice how imposing a zero in the barycentric coordinates forces the elements to be on a proper face. If there are s zeros with $0<s \leq k$ in the barycentric coordinates of some x, then x lies on a $(k-s)$-face.
Combinatorial Interior: The combinatorial interior is the set given by

$$
\operatorname{Int} \sigma=\sigma-\operatorname{Bd} \sigma
$$

The combinatorial interior, by this logic, is given as

$$
\operatorname{Int}\left\langle a_{0}, \ldots, a_{k}\right\rangle=\left\{x \in \mathbb{R}^{n}: x=\sum_{i=0}^{k} t_{i} a_{i} \text { with } \sum_{i=0}^{k} t_{i}=1, t_{i}>0 \forall i\right\}
$$

Notice how the strict positivity constraint keeps the points strictly "inside" the simplex and not on the boundary.

General Disks and Spheres: We will use of the following notation from now on:

$$
\begin{aligned}
D^{k} & =\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\} & \text { Closed unit } k \text {-disk } \\
S^{k-1} & =\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} & \text { Unit }(k-1) \text {-sphere }
\end{aligned}
$$

We had already introduced D^{2}, S^{2} and S^{1} already.
Simplices \& Boundaries as Disks \& Spheres: Let $\sigma=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ be a k-simplex in \mathbb{R}^{n}. Then, there is a homeomorphism

$$
h: D^{k} \rightarrow \sigma
$$

such that

$$
h\left(S^{k-1}\right)=\operatorname{Bd} \sigma
$$

If σ is a 1 -simplex, then it is an arc. If it is a 2 -simplex, then it is a disk. In both cases, we have

$$
\operatorname{Bd} \sigma=\partial \sigma \quad \& \quad \operatorname{Int} \sigma=\operatorname{int} \sigma
$$

Compactness and Connectedness: Every k-simplex $\sigma=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ and $\operatorname{Bd} \sigma$ are compact and path connected.

3.3 Simplicial Complexes

Simplicial Complex: A simplicial complex K in \mathbb{R}^{n} is a finite collection of simplices in \mathbb{R}^{n} such that
i) if $\sigma \in K$, then all faces of σ are in K.
ii) if $\sigma, \tau \in K$ with non-empty intersection, then $\sigma \cap \tau$ must be a face of both σ and τ.

For a simplicial complex $K, K^{((i))}$ is defined as the set of all i-simplices in K.
Subcomplex: A subcollection L of K is a subcomplex of K if L itself is a simplicial complex.

Star \& Link: Let K be a simplicial complex in \mathbb{R}^{n}, and $\sigma \in K$. The star of σ is defined as

$$
\operatorname{star}(\sigma, K)=\{\eta \in K: \eta \text { is a face of a simplex in } K \text {, which has } \sigma \text { as a face }\}
$$

Based on this definition, the link of σ is defined as

$$
\operatorname{link}(\sigma, K)=\{\eta \in \operatorname{star}(\sigma, K): \eta \cap \sigma=\varnothing\}
$$

Simplicial Maps: Let K be a simplicial complex in \mathbb{R}^{n} and let L be a simplicial complex in \mathbb{R}^{m}. A map

$$
f: K^{((0))} \rightarrow L^{((0))}
$$

is called a simplicial map if

$$
\left\langle a_{0}, \ldots, a_{i}\right\rangle \in K \Rightarrow\left\langle f\left(a_{0}\right), \ldots, f\left(a_{i}\right)\right\rangle \in L
$$

Simplicial Isomorphism: Such a map is a simplicial isomorphism if it is bijective, and its inverse is also a simplicial map. If there is a simplicial isomorphism between K and L, we say that they are simplicially isomorphic.

Underlying Space: Let K be a simplicial complex in \mathbb{R}^{n}. The underlying space of K, denoted $|K|$, is the subset of \mathbb{R}^{n} given by the union of all simplices in K.

$$
|K|=\bigcup_{\sigma \in K} \sigma
$$

Notice of $|K|$ is different from K as a set: K contains a finite amount of finite sets, while $|K|$ contains points from \mathbb{R}^{n} and is most likely an uncountable set (it is countable if $\left.K=K^{((0))}\right)$

Unique Simplex per Point: For each $x \in|K|$, there exists a unique simplex $\eta \in K$ such that $x \in \operatorname{Int} \eta$. Otherwise, two simplices intersect on a set that is not a face of a simplex in K.

Subdivision: Let K and K^{\prime} be simplicial complexes in \mathbb{R}^{n}. The simplicial complex K^{\prime} is said to subdivide K if $|K|=\left|K^{\prime}\right|$ and every simplex in K^{\prime} is a (not necessarily proper) subset of a simplex of K.

Induced Map of a Simplicial Map: Let K be a simplicial complex in \mathbb{R}^{n} and let L be a simplicial complex in \mathbb{R}^{m}, with $f: K^{((0))} \rightarrow L^{((0))}$ a simplicial map. The induced map of the underlying spaces $|K|$ and $|L|$ is the map $|f|:|K| \rightarrow|L|$ defined by extending f affinely over each simplex.

Continuity: The induced map $|f|$ of a simplicial map f is continuous.
Isomorphic Spaces: If f is a simplicial isomorphism between K and L, then $|K| \approx|L|$.
Isomorphic Subdivision Spaces: If K and L have simplicially isomorphic subdivisions, then $|K| \approx|L|$.

Connectedness: Let K be a simplicial complex in \mathbb{R}^{n}. Then, the following are equivalent:
i) $|K|$ is path connected.
ii) $|K|$ is connected.
iii) For any two simplices σ and τ in K, there is a collection of simplices η_{i} of K

$$
\tau=\eta_{1}, \eta_{2}, \ldots, \eta_{p}=\sigma
$$

such that $\eta_{i} \cap \eta_{i+1} \neq \varnothing$ for all $i=1, \ldots, p-1$
Simplicial Quotient Maps: Let K be a simplicial complex in \mathbb{R}^{n} and L a simplicial complex in \mathbb{R}^{m}. A simplicial map $f: K^{((0))} \rightarrow L^{((0))}$ is a simplicial quotient map if
i) For every simplex $\left\langle b_{0}, \ldots, b_{p}\right\rangle \in L$, there exists a simplex $\left\langle a_{0}, \ldots, a_{p}\right\rangle \in K$ such that $f\left(a_{i}\right)=b_{i}$.
ii) If $a, b \in K^{((0))}$ are two vertices of a common simplex, then $f(a) \neq f(b)$.

Notice how this definition is in parallel with the usage of quotient maps in the identification space definition.

Induced Map: The induced map $|f|:|K| \rightarrow|L|$ is a quotient map.
Inverse Image under the Induced Map: Let $y \in|l|$ be a point, and $\eta=\left\langle b_{0}, \ldots, b_{k}\right\rangle \in$ L be the unique simplex with $x \in \operatorname{Int} \eta$ with strictly positive barycentric coordinates t_{i}, i.e. $y=\sum_{i=0}^{k} t_{i} b_{i}, \sum_{i=0}^{k} t_{i}=1$ and $t_{i}>0$. Then, $|f|^{-1}(y)$ contains all points $x \in|K|$ with the same barycentric coordinates contained in some (possibly multiple) simplex $\left\langle a_{0}, \ldots, a_{k}\right\rangle \in K$ such that $f\left(a_{i}\right)=b_{i}$.

Admissible Partition: Let K be a simplicial complex. An admissible partition of $K^{((0))}$ is a collection $\mathcal{V}=\left\{A_{i}\right\}_{i \in I}$ of disjoint subsets of $K^{((0))}$ such that
i) $\bigcup_{i \in I} A_{i}=K^{((0))}$
ii) No two vertices of the same simplex are in the same set A_{i}.

Existence of an Image Complex: For any admissible partition \mathcal{V} of $K^{((0))}$ of a simplicial complex, there exists some simplicial complex K^{\prime} in some \mathbb{R}^{m} and a simplicial quotient map $f: K^{((0))} \rightarrow K^{\prime((0))}$ such that

$$
\left\{f^{-1}(v): v \in K^{\prime((0))}\right\}=\mathcal{V}
$$

Induced Partition: An admissible partition of \mathcal{V} of $K^{((0))}$ induces a partition of $|K|$, denoted $\mathcal{P}(\mathcal{V})$, as follows: Two points $x, y \in|K|$ are in the same partition if and only if for $x \in$ $\operatorname{Int}\left\langle a_{0}, \ldots, a_{k}\right\rangle$ and $y \in \operatorname{Int}\left\langle b_{0}, \ldots, b_{k}\right\rangle$ of K such that
i) the 0 -simplices a_{i} and b_{i} are in the same set in the partition \mathcal{V}, and
ii) $F(x)=y$ under the unique affine linear map $F:\left\langle a_{0}, \ldots, a_{k}\right\rangle \rightarrow\left\langle b_{0}, \ldots, b_{k}\right\rangle$ with $F\left(a_{i}\right)=b_{i}$ (meaning they have the same barycentric coordinates in their own k simplices).

Induced Preimage of the Image Subspace: We know that an image simplicial complex K^{\prime} exists for any admissible partition \mathcal{V} of $K^{((0))}$ and a simplicial quotient map $f: K^{((0))} \rightarrow K^{\prime((0))}$ that abides by \mathcal{V}. The induced map of this quotient map also abides by the induced partition $\mathcal{P}(\mathcal{V})$, meaning

$$
\left\{|f|^{-1}(x): x \in\left|K^{\prime}\right|\right\}=\mathcal{P}(\mathcal{V})
$$

Homeomorphic Identification Space: The identification space of $|K|$ and $\mathcal{P}(\mathcal{V})$ is homeomorphic to $\left|K^{\prime}\right|$.

3.4 Simplicial Surfaces

When is the underlying space of a simplicial complex a surface?

Simplicial Surface: Let K be a simplicial complex in \mathbb{R}^{n}. Then $|K|$ is a surface if and only if K is a 2 -complex such that
i) each 1 -simplex is the face of precisely two 2 -simplices, and
ii) the underlying space of the link of every 0 -simplex of K is a 1 -sphere (homeomorphic to S^{1}).
If K satisfies this condition, then K is called a simplicial surface.
Discarding the First Condition: The second condition in the statement above is actually enough by itself. So, if the underlying space of the link of every 0 -simplex of K is a 1 -sphere (homeomorphic to S^{1}), then K is a simplicial surface.

Triangulation: Let $Q \in \mathbb{R}^{n}$ be a topological surface. A simplicial complex K is said to triangulate Q if there is a homeomorphism $h:|K| \rightarrow Q$. In this case, we say that Q is triangulated by K and K together with the homeomorphism h is called a triangulation of K.

Existence: Any compact topological surface in \mathbb{R}^{n} can be triangulated.
Common Triangulations: If a topological surface is triangulated by two simplicial surfaces K_{1} and K_{2}, K_{1} and K_{2} have simplicially isomorphic subdivisions.

3.5 The Euler Characteristic

Euler Characteristic of a Simplicial Complex: Let K be a 2-complex, and denote

$$
V=\left|K^{((0))}\right| \quad E=\left|K^{((1))}\right| \quad F=\left|K^{((2))}\right|
$$

Then the Euler characteristic of K, denoted $\chi(K)$ is defined as

$$
\chi(K)=V-E+F
$$

Invariance under Triangulations: Let K_{1} and K_{2} be two 2-complexes that triangulate the same compact surface $Q \subset \mathbb{R}^{n}$. Then

$$
\chi\left(K_{1}\right)=\chi\left(K_{2}\right)
$$

The proof of this statement uses the fact that if a complex L is a subdivision of a complex K, then $\chi(K)=\chi(L)$, but the reason for this will be apparent later on.

Euler Characteristic of a Surface: The Euler characteristic of a compact topological surface is that of a 2 -complex that triangulates it. This definition is well-defined due to the above fact.

Connected Sum: Let Q_{1} and Q_{2} be compact connected surfaces in \mathbb{R}^{n}. Then

$$
\chi\left(Q_{1} \# Q_{2}\right)=\chi\left(Q_{1}\right)+\chi\left(Q_{2}\right)-2
$$

3.6 Simplicial Curvature and the Simplicial Gauss-Bonnet Theorem

Simplicial Curvature: Let K be a simplicial surface. The curvature of K at a vertex (0 simplex) v is defined as

$$
d(v)=2 \pi-\sum_{\eta: v \in \eta} \angle(v, \eta)
$$

The simplicial curvature $d(v)$, also called the angle defect of v, is a measure of how much the complex deviates from being flat at v.

Simplicial Gauss-Bonnet Theorem: Let K be a simplicial surface. Then

$$
\sum_{v \in K^{((0))}} d(v)=2 \pi \chi(K)
$$

This simple statement is used in the proof of several important statements made earlier without creating any circular argumentation.

Orientability and Euler Characteristic Characterization: The Classification Theorem gives us an explicit list of all the compact connected surfaces, where the ones in the T^{2} group are all orientable and those in the P^{2} group are all non-orientable. If one examines the list, those in the same group all have different Euler characteristics. Therefore we conclude that two compact and connected topological surfaces Q_{1} and Q_{2} are homeomorphic if and only if they have the same Euler characteristic AND they are either both orientable or both non-orientable.
Invariance of $\chi()$ under Subdivisions: If the simplicial surface L is (or is homeomorphic to) a subdivision of a simplicial surface K, then $\chi(K)=\chi(L)$.

