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1 Languages and Structures

1.1 Languages

Language: A language L is a collection of symbols, which are separated into the following
categories:

1. Logical symbols

2. Punctuation symbols

3. Variable symbols V arsL (as many as you need)

4. Constant symbols CL (optional)

5. Function symbols FL (optional)

6. Relation symbols RL (optional)

Because the �rst three are obligatory, you only give the symbols from the last three cate-
gories, if you have any, when specifying a language.
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Term: For a given language L, the terms of that language TermL are de�ned recursively as
follows:

TB1 Each variable is a term.

TB2 Each constant is a term.

TI If t1, t2, ...tn are terms and f is an n-ary function, then f(t1, t2, ..., tn) is also a term.

Formulas: For a given language L, the formulas of that language FormL are de�ned recursively
as follows:

FB1 t = u is a formula, where t and u are terms.

FB2 r(t1, t2, ..., tn) is a formula, where t1, t2, ...tn are terms.

FI1 If α is a formula, then so is ¬α.
FI2 If α and β are formulas, then so is α ∨ β.
FI3 If x is a variable and ϕ is a formula, then so is ∀x(ϕ).

Notice that for the inductive steps, the other logical connectives and ∃ are skipped. This
is because they can be expressed in terms of the existing clauses.

Induction on the Complexity of Formulas: Much like induction on natural numbers,

- you prove it for a base case (atomic formulas),

- and show it for a non-atomic formula, assuming that the claim holds for the non-
atomic formula's constituents.

Freedom: Given x a variable and ϕ a formula, we say that x is free in ϕ in the following cases:

- ϕ is atomic and x occurs in ϕ as a variable.

- ϕ is of the form ¬α and x occurs in α as a variable.

- ϕ is of the form α ∨ β and x occurs in α or β as a variable.

- ϕ is of the form ∀� ψ, x is not � and is free in ψ.

A formula with no free variables is called as a sentence.

Substitution: Given u, t ∈ TermL and x ∈ V arsL, we de�ne the substitution of t for x in u,
uxt , inductively as follows:

- If u is a variable equal to x, then uxt is t.

- If u is a variable not equal to x, then uxt is u.

- If u is of the form f(v1, v2, ..., vn) with variables v1, v2, ..., vn, then u
x
t is f((v1)xt , (v2)xt , ..., (vn)xt ).

Given ϕ ∈ FormL, t ∈ TermL and x ∈ V arsL, we de�ne the substitution of t for x in ϕ,
ϕxt , inductively as follows:

- If ϕ is of the form t1 = t2, then ϕ
x
t is (t1)xt = (t2)xt .

- If ϕ is of the form r(v1, v2, ..., vn) with variables v1, v2, ..., vn, then ϕ
x
t is r((v1)xt , (v2)xt , ..., (vn)xt ).

- If ϕ is of the form ¬α, then ϕxt is ¬αxt .
- If ϕ is of the form α ∨ β, then ϕxt is αxt ∨ βxt .
- If ϕ is of the form ∀� ψ, then ϕxt is ϕ if � is x, and is ∀� ψxt otherwise.
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Substitutability: Let ϕ ∈ FormL, t ∈ TermL and x ∈ V arsL. We say that t is substitutable

for x in ϕ if

- ϕ is atomic, or

- ϕ is of the form ¬α and is substitutable for x in α, or

- ϕ is of the form α ∨ β and is substitutable for x in α and β, or

- ϕ is of the form ∀y ψ and either

- x is not free in ϕ, or

- y does not occur in t and t is substitutable for x in α.

1.2 Structures

Fix a language L.

Structure: An L-structure A consists of a

- Non empty set A which is the domain of the structure,

- An interpretation of the language L, which means

- for each constant symbol c of L, an element cA ∈ A,
- for each n-ary function symbol f of L, a function fA : An → A,

- for each n-ary relation symbol r of L, an element rA ⊆ A×A× ...×A.

The interpretation is what gives �meaning� to the language at hand.

Variable and Term Assignment Maps: Let A be a structure. A variable assignment func-
tion is a mapping s : V arsA → A.
The modi�ed variable assignment function s[x|a] for some a ∈ A and x ∈ V arsA is de�ned
as

s[x|a](v) =

{
s(v) , v 6= x

a , v = a

The modi�ed variable assignment function is useful in instantiating a variable to a speci�c
value.
The term assignment function s̄ : TermL → A generated by s is de�ned recursively as
follows:

- If t is a constant symbol, say c, then s̄(t) = cA,

- If t is a variable symbol, then s̄(t) = s(t),

- If t is of the form f(t1, t2, ..., tn) where t1, t2, ..., tn are terms, then s̄(t) = fA(s̄(t1), s̄(t2), ..., s̄(tn)).

Satisfaction (Tarski): Let A be an L-structure, s be variable assignment map. We say that
A satis�es the formula ϕ with assignment s, written as A |= ϕ[s], if

- ϕ is of the form t = u and s̄(t) = s̄(u), where t and u are terms.

- ϕ is of the form r(t1, t2, ..., tn) and (s̄(t1), s̄(t2), ..., s̄(tn)) ∈ rA, where t1, t2, ..., tn are
terms.

- ϕ is of the form ¬α and A 6|= α[s].

- ϕ is of the form α ∨ β and A |= α[s] or A |= β[s].

- ϕ is of the form ∀xα and for each element a ∈ A, we have A |= ϕ[s[x|a]].
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In case a formula ϕ is satis�ed by a structure A under any variable assignment map, then
we write A |= ϕ.

Theory: A theory is a set of sentences Σ ⊆ FormL. In case a structure A satis�es every sentence
of the theory Σ, we write A |= Σ.

Theory of a Structure: Let A be a structure. Its theory Thm(A) is de�ned as the set of
sentences it satis�es.

Th(A) = {ϕ | A |= ϕ and ϕ ∈ FormL is a sentence}

A similar de�nition holds for a set of sentences Σ ⊆ FormL.

Isomorphism of Structures: Let A and B be two structures. We say that they are isomor-
phic, A ∼= B, if there is a bijection j : A→ B such that

- j(cA) = cB for every c ∈ CL.
- (a, b, ..., c) ∈ rA i� (j(a), j(b), ..., j(c)) ∈ rB for every r ∈ RL and a, b, ..., c ∈ A.
- fA(a, b, ..., c) = fB(j(a), j(b), ..., j(c)) for every f ∈ FL and a, b, ..., c ∈ A.

Equivalence of Structures: Two structures A and B are said to be elementarily equivalent,
A ≡ B if they have the same theory: Thm(A) = Thm(B).
If two structures are isomorphic, they are elementarily equivalent. The converse need not
be true.

Logical Consequences/Implications: Let Σ,∆ ∈ FormL. We say that Σ logically implies

∆, Σ |= ∆, if for any L-structure A, if A |= Σ then A |= ∆. This means that any model A
of Σ is also a model of ∆.
A similar de�nition can be made between single formulas and sets of formulas as well:
ϕ |= ψ, ϕ |= Σ, Σ |= ϕ.

2 Deductions

2.1 Intermission: Propositional Logic

Propositional Formulas: P , Q, R, ... are propositional variables and ¬,∧,∨,→,↔ are logical
connectives. A propositional formula is de�ned inductively as follows:

- A propositional variable is a propositional formula (a.k.a. an atomic formula).

- If ϕ and ψ are propositional formulas, then so are the following:

¬ϕ ϕ ∨ ψ ϕ ∧ ψ ϕ→ ψ ϕ↔ ψ

Given a formula ϕ ∈ FormL in �rst order logic, one can obtain its propositional counterpart
ϕ̃ easily.

Truth Assignment: A truth assignment map for propositional variables v : PropV ars →
{0, 1} can be easily extended to a map for propositional formulas v̄ : PropForm→ {0, 1}
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as follows:

v̄(ϕ) =



v(ϕ) if ϕ is atomic

1− v(ψ) if ϕ is of the form ¬ψ
v(ψ)v(γ) if ϕ is of the form ψ ∧ γ
d(v(ψ) + v(γ))/3e if ϕ is of the form ψ ∨ γ
d((1− v(ψ)) + v(γ))/3e if ϕ is of the form ψ → γ

1 if ϕ is of the form ψ ↔ γ and v(ψ) = v(γ)

Tautology: A propositional formula ϕ is a tautology if v̄(ϕ) = 1 under any truth assignment
map v̄ : PropForm→ {0, 1}.

Propositional Consequence/Implication: Given a set of propositional formulas Γ̃ and a
propositional formula ϕ̃, we say that ϕ̃ is a propositional consequence of Γ̃ if for every
v̄ : PropForm → {0, 1} with v̄(ψ̃) = 1 for all ψ̃ ∈ Γ̃, we have v̄(ϕ̃) = 1. Equivalently, if
the following propositional formula is a tautology:( ∧

ψ̃∈Γ̃

ψ̃
)
→ ϕ̃

Given Γ ⊆ FormL and ϕ ∈ FormL, one can easily extend the propositional implication
de�nition here, by obtaining Γ̃ and ϕ̃.

2.2 Our Proof System

What does it mean to prove something? What is a proof?

Fix a language L.

Proofs and Proof Systems: Let Σ,Λ ⊆ FormL. A �nite sequence of L-formulas (ϕ1, ϕ2, ..., ϕn,Φ)
is said to be a deduction/proof of Φ, Σ ` Φ, if for all ϕi we have

- ϕ ∈ Σ, or (Σ is the set of non-logical axioms)

- ϕ ∈ Λ, or (Λ is the set of logical axioms)

- There is a rule of inference (Γ, ϕi) such that Γ ⊆ {ϕ1, ϕ2, ..., ϕn−1}.

For a di�erent selection of Σ, Λ and inference rules, we obtain a di�erent proof system.

Our Logical Axioms: Our logical axioms Λ are of two types:

EA Equality Axioms: - For each x ∈ V arsL, x = x is an axiom.

- For all variables x1, x2, ... xn, y1, y2, ... yn and an n-ary function symbol f , the
following is an axiom:

[(x1 = y1) ∧ (x2 = y2) ∧ ... ∧ (xn = yn)]→ [f(x1, x2, ...xn) = f(y1, y2, ...yn)]

- For all variables x1, x2, ... xn, y1, y2, ... yn and an n-ary relation symbol r, the
following is an axiom:

[(x1 = y1) ∧ (x2 = y2) ∧ ... ∧ (xn = yn)]→ [r(x1, x2, ...xn)↔ r(y1, y2, ...yn)]
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QA Quanti�er Axioms: For each t ∈ TermL, x ∈ V arsL and ϕ ∈ FormL, if t is
substitutable for x in ϕ, then the following two are axioms:

UI Universal Instantiation: ∀xϕ→ ϕxt
EG Existential Generalization: ϕxt → ∃xϕ

Our Inference Rules: There are two types of inference rules:

QR Quanti�er Rules: For any two formulas ϕ and ψ and variable symbol x not free
in ψ, we have

({ψ → ϕ}, ψ → ∀xϕ)

({ϕ→ ψ},∃xϕ→ ψ)

PC Propositional Consequences: For any �nite set Γ ⊆ FormL and ϕ ∈ FormL, if
ϕ is a propositional consequence of Γ, then (Γ, ϕ) is a rule of inference.

Validity: A �rst-order formula ϕ ∈ FormL is called valid if ∅ |= ϕ, in which case we write
|= ϕ. This means that it is true by itself, without needing any other formulas (axioms).
Thus, valid statements are present in the theory of all structures.
If ϕ̃ is a tautology, then ϕ is valid. However, the converse is not true in general.

Two Technical Lemmas:

1. The logical axioms (EA and QA) of our proof system are valid.

2. Let (Γ, ϕ) be an inference rule. Then Γ |= ϕ.

Important Lemma: Let C ⊆ FormL. If C satis�es

- Σ ⊆ C,
- Λ ⊆ C, and
- If (Γ, ϕ) is an inference rule with Γ ⊆ C, then ϕ ∈ C,

then Thm(Σ) ⊆ C.

Soundness Theorem: Let Σ ⊆ FormL. For all ϕ ∈ FormL, if Σ ` ϕ, then Σ |= ϕ.
This theorem is important, as it ties the syntactic notion of provability to the semantic
notion of satisfaction.

Properties of Our Proof System:

Equality Properties: Let x, y, z ∈ V arsL. Then
` x = x

` x = y → y = x

` (x = y ∧ y = z)→ x = z

Universal Closure: Σ ` θ if and only if Σ ` ∀xθ.
Deduction Theorem: Let Σ ⊆ FormL and θ ∈ SentL. Then Σ ∪ {θ} ` ϕ if and only if

Σ ` (θ → ϕ).

3 Completeness and Compactness

3.1 Completeness

Consistency and Inconsistency: Let Σ ⊆ FormL. Σ is said to be inconsistent if Σ ` (ϕ∧¬ϕ)
for some ϕ. Σ is said to be consistent if it is not inconsistent, in which case we write
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Cons(Σ).
An inconsistent Σ can prove any ϕ ∈ FormL.
Σ is said to be maximally consistent if it contains all formulas ϕ which does not make it
inconsistent, i.e. any addition to it from FormL − Σ makes it inconsistent.

Gödel's Completeness Theorem: Let Σ ⊆ FormL. For all ϕ ∈ FormL, if Σ |= ϕ, then
Σ ` ϕ.

Second equivalent version: Let Σ ⊆ FormL. Then if Σ is consistent, it has a model.

This theorem is important, as it ties the semantic notion of satisfaction to the syntactic
notion of provability. Combined with the Soundness Theorem, we obtain

Σ |= ϕ if and only if Σ ` ϕ

3.2 Compactness

Satis�ability: Σ ∈ FormL is said to be satis�able if it has a model.

Finite Satis�ability: Σ ∈ FormL is said to be �nitely satis�able if every �nite subset of Σ has
a model.

Compactness Theorem: Let Σ ∈ FormL. Σ is satis�able if and only if it is �nitely satis�able.

4 Changing Models

4.1 (Elementary) Substructures, and the Tarski-Vaught Test

Substructure: Let A and B be two structures. We say that A is a substructure of B, written
A ⊆ B, if

- A ⊆ B,
- For every constant symbol c ∈ CL, we have cA = cB.

- For every n-ary relation symbol r ∈ RL, we have rA = rB ∩ An, that is, for every
(a1, a2, . . . , an) ∈ An, rA(a1, a2, . . . , an) if and only if rB(a1, a2, . . . , an)

- For every n-ary function symbol f ∈ FL, we have aA = fB � An, that is, for every
(a1, a2, . . . , an) ∈ An, fA(a1, a2, . . . , an) = fB(a1, a2, . . . , an)

Let A be a structure with domain A and B ⊆ A. B is the domain of a substructure if and
only if cA ∈ B for all constant symbols and B is closed under fA for all function symbols
in L.
A substructure can behave very di�erently than its parent structure.

Elementary Substructure: Let A and B be two models such that A ⊆ B. We say that A is
an elementary substructure of B, written A � B if for every formula ϕ(x̄) and ā ∈ A, we
have A |= ϕ(ā) if and only if B |= ϕ(ā).

Embeddings: Let A and B be L-structures. A map π : A→ B is an L-embedding if

- π is one-to-one,

- For all n-ary relation symbols r and ā ∈ A, we have rA(ā) if an only if rB(π(ā)),

- For all n-ary function symbols f and ā ∈ A, we have π(fA(ā)) = fB(π(ā)).
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A bijective L-embedding is called an L-isomorphism.

Elementary embedding: Let π : A→ B be an L-embedding. We say that π is an elementary
embedding if the substructure B with domain π(A) is an elementary substructure.

Tarski-Vaught Test: LEt A ⊆ B be two L-structures. Suppose for every formula ϕ(x̄, y) and
for every ā ∈ A and b ∈ B, if B |= ϕ(ā, b) then there is some d ∈ A with B |= ϕ(ā, d).
Then A � B.
It is very di�cult to make use of the Tarski-Vaught test on its own. For us, it is mostly
important in the proofs of the Löwenheim-Skolem theorems.

4.2 Löwenheim-Skolem Theorems

Downward Löwenheim-Skolem Theorem: Let B be an L-structure and let S ⊆ B. Then
there is an elementary substructure A � B such that S ⊆ A and |A| = max{|S|, |L|,ℵ0}.
Setting S = ∅, if your language is countable, this theorem guarantees the existence of
countable elementary substructures.

Complete Diagrams: Ler A be an L-structure. Expand L into L+
A = L ∪ {ca : a ∈ A}, where

ca's are new distinct constant symbols. Expand A into A+ by interpreting cAa = a for all
a ∈ A. The complete diagram of A is de�ned as Th(A+), denoted as CDiag(A).
The complete diagram of a structure contains any and all sentences within that structure
regarding every single element, and hence is a wider structure.

Important Lemma: Let A, B be two L-structures. If B can be expanded into a L+
A structure

B+ such that B+ |= CDiag(A), then there is an elementary embedding π : A→ B.

Upward Löwenheim-Skolem Theorem: For any in�nite structure A and a cardinal κ ≥
max{|A|, |L|,ℵ0}, there is an L-structure B such that A � B and |B| = κ.
Corollary: Let Σ be a set of sentences over a countable language. If Σ has in�nite models,
then Σ has models of all in�nite cardinals.

Skolem's Paradox: Suppose that ZFC is consistent. Then by completeness, it must have a
model, M = (M,∈M) |= ZFC. Let us suppose further that M is transitive and ∈M=
{(a, b) : a ∈ b; a, b ∈ M}. As L = {∈} is countable, by the downward Löwenheim-Skolem
theorem, there is some A � (M,∈M) with |A| = ℵ0. But since (A,∈) |= ZFC, we must
have (A,∈) |= ¬∃f ′f is a bijection from N to R′, but A is countable. So, how does that
happen?
In reality, there are such bijections, but none of them are in A. For this reason A 'believes'
that there are no bijections from N to R, whereas, in reality, both NA and RA are countable.

4.3 Complete Theories, Categoricity, and Back-and-Forth

Completeness of a Theory: A theory Σ is said to be complete if for every L-sentence ϕ, either
Σ ` ϕ (Σ |= ϕ) or Σ ` ¬ϕ (Σ |= ¬ϕ).

Categoricity: Let κ be a cardinal number. A theory Σ is said to be κ-categorical if

- Σ has models of cardinality κ, and

- Any two models of Σ of cardinality κ are isomorphic.

�o±�Vaught Test: Let Σ be κ-categorical for some κ ≥ max{ℵ0, |L|} and suppose that Σ does
not have �nite models. Then Σ is complete.
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Back-and-forth Method: The back-and-forth method is a method of proof. Here, it was used
to prove that DLOWE is ℵ0-categorical. In the proof, to show categoricity, one must
construct an isomorphism between two random DLOWE structures. One starts with two
singletons from each of the two models, and goes 'back and forth' between these two by
adding elements to both of them while still conserving the isomorphism.

DLOWE: Let L = {<}. The theory of Dense Linear Orders Without Endpoints (DLOWE) is
a theory of this language as given below.

∀x ¬(x < x) (Strict Linear Order: Irre�exive)

∀x∀y∀z ((x < y ∧ y < z)→ x < z) (Strict Linear Order: Transitive)

∀x∀y ((x < y) ∨ (x = y) ∨ (y < x)) (Strict Linear Order: Trichotomy)

∀x∀y(x < y → ∃z (x < z ∧ z < y)) (Denseness)

¬∃x∀y(x = y ∨ y < x) (No Greatest Element)

¬∃x∀y(y = x ∨ x < y) (No Least Element)

DLOWE clearly has no �nite models. Being ℵ0-categorical, by �o±�Vaught test, it must
be complete.

4.4 De�nability

De�nability: Let A be an L-structure. A subset X ⊆ An is called S-de�nable if there exists
an L-formula ϕ(x̄, ȳ) and b̄ ∈ S ⊆ A such that X = {ā : A |= ϕ(ā, b̄)}.
Here the set S is a set of parameters to de�ne X. If we let S = ∅, we call such sets X as
de�nable without parameters or just de�nable.

Lemma (De�nable projections): If X ⊆ An+m is S-de�nable, then so is the projection
proj(X) = {ā ∈ An : There is some b̄ ∈ Am such that (ā, b̄) ∈ X}.

Theorem (Pointwise �xing): If X ⊆ An is S-de�nable and f : A → A is an automorphism
such that f �xes S pointwise (i.e. f(s) = s for all s ∈ S), then f �xes X setwise (X =
{f(x) : x ∈ X} = f [X]).
The converse of this theorem is also quite useful when S = ∅. Then the pointwise �xing
condition is vacuously satis�es, and the theorem is only a relation between de�nability
and the setwise �xing ability of an automorphism. The converse is the following: If an
automorphism of A does not �x a set X setwise, then X cannot be de�nable (without
parameters.)

4.5 Quanti�er Elimination and Model-Completeness

Quanti�er Elimination for Structures: A structure A is said to admit quanti�er elimination
if and only if for every n ∈ N+, every de�nable subset of An is de�ned by a quanti�er-free
formula.
We need such a concept because for some models, de�nable subsets can get very complicated
(e.g. (N,+, ·, 0, 1)). Understanding de�nable subsets de�ned by quanti�er-free formulas is
generally an easier task.

Principle DLO Formulas: A principle DLO formula for the variables x1, x2, ..., xn is a formula
ψ(x1, x2, ..., xn) of the form

- If n = 1, ψ(x1) is x1 = x1.
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- If n > 1, ψ(x1, x2, ..., xn) is
n−1∧
i=1

xσ(i) �i xσ(i+1) where σ ∈ Sym{1, 2, ..., n} is a

permutation and �i is either < or =.

A principle DLO formula basically tells the con�guration of a certain number of elements.
The job of σ is to tell which two variables are related consecutively and the job of �i at
each i-th step is to determine the relation between the two elements.
A Lemma: Let ψ(x̄) be a principle DLO formula and ā, b̄ ∈ Qn such that (Q, <) |=
ψ(ā) ∧ ψ(b̄). Then there exists f ∈ Aut(Q, <) with f(ā) = b̄.
This means that for the same speci�c con�guration of certain elements (as set by ψ),
one can transform two groups of numbers satisfying that condition to the other via some
automorphism f . Think of f as a collection of rules that stretches and translates the
rational line to `tailor' one group of number to the other.
Important: (Q, <) admits quanti�er elimination.

Quanti�er Elimination for Theories: A theory T is said to admit quanti�er elimination if for
every formula ϕ, there exists a quanti�er-free formula ψ such that T ` ϕ↔ ψ (T |= ϕ↔ ψ).
Important: DLO admits quanti�er elimination.

Model-Completeness: A theory T is called model-complete if A � B whenever A,B |= T and
A ⊆ B. That is to say, any substructure of B |= T is an elementary substructure.

Quanti�er Elimination & Model-Completeness: If a theory T admits quanti�er elimina-
tion, then T is model-complete.

4.6 Ultraproducts, �o±' Theorem and Some Applications

Filter: Let X be a set. A �lter F ⊆ P(X) on X is a collection such that

- ∅ 6∈ F and X ∈ F
- For all A,B ∈ F , A ∩B ∈ F
- For all A ∈ F and A ⊆ B ⊆ X, B ∈ F

A �lter sort of `chooses' or `prefers' certain subsets of X. But we can think of a �lter that
does not include both some subset Y and its complement Y C . Then is Y `preferred' by
this �lter or not?

Ultra�lter: A �lter U on a set X is an ultra�lter if for all A ⊆ X, we have either A ∈ U or
AC ∈ U .
Now an ultra�lter becomes a �lter that decisively divides the P(X) into two parts, and
we can judge all subsets of X on whether they are preferred or not (not being preferred
meaning that its complement is preferred).

Principle Ultra�lter: U = {Y ⊆ X|a ∈ Y } is called as the principle ultra�lter generated by
the element a ∈ X.

Filters to Ultra�lters: For every �lter F ⊆ P(X), there is an ultra�lter U such that F ⊆ U .

Ultraproduct: Let L be a language with constant symbols CL, relation symbols RL and func-
tion symbols FL. Let I be an index set and U ⊆ P(I) an ultra�lter over the index set. Let
{Mi|i ∈ I} be a set of L-structures indexed by I.
De�ne an equivalence relation ∼ on

∏
i∈I

Mi given by

(ai)i∈I ∼ (bi)i∈I if and only if {i ∈ I|ai = bi} ∈ U
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That is to say that the sequences (ai)i∈I and (bi)i∈I are said to be related if and only
if they agree on a �large portion� of their indices where the bigness is de�ned using the
ultra�lter. Or in other words, they are equal if and only if they agree on the �preferable�
indices. Using this equivalence relation, de�ne the set M as

M =
∏
i∈I

Mi/ ∼

We will now create an L-structure M with domain M .
For each constant symbol c ∈ CL, de�ne rM by

cM = (cMi)i∈I

where the overline denotes the congruence class. The notation means that each constant
symbol is interpreted as the congruence class of the sequence constructed by the interpre-
tation of that constant symbol in the set {Mi|i ∈ I}.
For each n-ary relation symbol r ∈ RL, de�ne rM by(

(xi)1
i∈I , (xi)

2
i∈I , ..., (xi)

n
i∈I

)
∈ rM if and only if {i ∈ I|(x1

i , x
2
i , ..., x

n
i ) ∈ rMi} ∈ U

This means that a group of sequences are related under r if and only if the indices at
which the tuples formed by the elements of each sequence with that index, is �preferred�
according to U .
For each n-ary function symbol f ∈ FL, de�ne fM by

fM
(

(xi)1
i∈I , (xi)

2
i∈I , ..., (xi)

n
i∈I

)
=
(
fMi(x1

i , x
2
i , ..., x

n
i )
)

That is to say that the image of a group of sequences under f is the series congruent to
the series made by the image of the function in each structure. This function is proved to
be well-de�ned.
Then �nally, the L-structure

M =

(∏
i∈I

Mi/ ∼, {fM}f∈FL , {r
M}r∈RL , {c

M}c∈CL

)
is called as the ultraproduct of {Mi|i ∈ I} with respect to U and is denoted by

M =
∏
i∈I

Mi/U

�o±' Theorem: Let ϕ(x1, x2, ..., xn) be an L-formula and (ai)1
i∈I , (ai)

2
i∈I , ..., (ai)

n
i∈I ∈

∏
i∈I

Mi/ ∼.

Then ∏
i∈I

Mi/U |= ϕ

(
(ai)1

i∈I , (ai)
2
i∈I , ..., (ai)

n
i∈I

)
if and only if

{i ∈ I|Mi |= phi(a1
i , a

2
i , ..., a

n
i )} ∈ U

Ultrapower: Let I be an index set and U ∈ P(I) be an ultra�lter. Set Mi = M for all i ∈ I.
The the ultraproduct

∏
i∈I

Mi/U =
∏
i∈I

M/U is called as the ultrapower of M with respect

to U .
The map f : M

∏
i∈I

M/ ∼ given by f(m) = (m)i∈I is an elementary embedding from M to∏
i∈I

M/U
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