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1 Groups

Group: A non-empty set G with a binary operation · : G×G→ G is a group if

(G1) For all x, y, z ∈ G, x(yz) = (xy)z.

(G2) There exists e ∈ G such that for all g ∈ G eg = ge = g, called the identity of the
group.

(G3) For all x ∈ G, there exists y ∈ G such that xy = yx = e, i.e. each element has an
inverse in the group.

The order of a group G is the cardinality of its domain, denoted o(G) = |G|.

A group is called abelian if the group operation is commutative, i.e. for all x, y ∈ G,
xy = yx.

Some immediate lemmas are as follows:

1. e, the identity element, is unique.

2. The inverse x−1 for each x is unique.

3. (x−1)−1 = x

4. (xy)−1 = y−1x−1

5. e−1 = e

6. xx = x⇒ x = e

7. Cancellation laws: xy = xz ⇒ y = z and yx = zx⇒ y = z.

Subgroup: Let G be a group and H ⊂ G. If H is also a group under the same operation as G,
H is called a subgroup of G, denoted H ≤ G.

A subgroup H necessarily has the same identity and inverse per its elements as the parent
group G.

A non-empty subset H ⊂ G is a subgroup if and only if for all x, y ∈ G, xy−1 ∈ H.

Generated Subgroup: Let S ⊂ G for some group G. De�ne

S = {H : H ≤ G,S ⊂ H}

Then 〈S〉 =
⋂
H∈S

H is the subgroup generated by S.

〈S〉 = {se11 ...s
en
n : si ∈ S, ei = ±1, i = 1, ..., n, n ∈ Z+}
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If G = 〈S〉, then S is called a set of generators for G.

If S = {a}, a ∈ G, then we write 〈a〉 = {an : n ∈ Z}.
Cyclic Group: A group G is called cyclic if there is a single element generating it,

i.e. G = 〈a〉 for some a ∈ G. A cyclic group may have more than one generator.

Every cyclic group is abelian, but the converse is generally not true, i.e. not
every abelian group is cyclic.

If G = 〈a〉 is of �nite order with |G| = n, then e = an and n = min{k ∈ Z+ :
e = ak}.

If G = 〈a〉 is of in�nite order, then aj = e if and only if j = 0, meaning aj 6= e
for all j ∈ Z− {0}. Further, aj = ai if and only if j = i.

|HK|: For H,K �nite subgroups of G, we have

|HK| = |H||K|
|H ∩K|

Order of an Element: For a ∈ G, the order is de�ned as o(a) = o(〈a〉). Regarding the order
of an element, the followings are equivalent:

m a) o(a) = n.

m b) an = e and n = min{k ∈ Z+ : e = ak}.
m c) an = e and n|m for any m ∈ Z with am = e.

A �nite group of order n is cyclic if and only if it contains an element g with o(g) = n.

Every subgroup of a cyclic group is cyclic. If G = 〈g〉 and |G| = m > 1, then a proper
subgroup H ≤ G is given by H = 〈gk〉 for some k ∈ Z with k|m and k > 1. In this
case, o(H)|m.

The order of an element ak ∈ G is given by

o(ak) =
o(a)

gcd(k, |G|)

Coset: Let H ≤ G and a ∈ G. Then the sets

aH = {ah : h ∈ H}
Ha = {ha : h ∈ H}

are respectively the left and right cosets of H in G, and a is their representative.

aH = bH if and only if b−1a ∈ H or equivalently a−1b ∈ H. Similarly, Ha = Hb if and
only if ba−1 ∈ H or equivalently ab−1 ∈ H.

The above statement implies that aH = H if and only if a ∈ H or equivalently a−1 ∈ H.
(Take b = e.)

There are as many distinct right cosets of H as distinct left cosets of H.

For all a ∈ G, |H| = |Ha| = |aH|.
All the right/left cosets of some H are disjoint, unless they are equal. Since their union

gives the whole of G, the right/left cosets of H partition G.

Index: Let H ≤ G. Then the number of distinct right/left cosets of H in G is called the
index of H in G, denoted [G : H].

[G : H] = 1 if and only if G = H.
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Lagrange's Theorem: Let H ≤ G. Then

|G| = [G : H]|H|

In particular if G is �nite, then
|H|
∣∣|G|

Take a group of �nite prime order and take one of its non-trivial cyclic groups. Then as
this subgroup is non-trivial, it has index larger than 1, and consequently must equal
to the order of the whole group as the group is of prime order and the order of any
subgroup must divide the group order. Therefore the whole group turns out to be
cyclic, and therefore cyclic. In short, any �nite group of prime order is abelian.

If G is a �nite group and a ∈ G, then o(a)|o(G).
If G is a �nite abelian group of order |G| and p is a prime dividing |G|, then G has an

element of order p, and hence a subgroup of order p.

Normal Subgroup: Let H ≤ G. Then if any of the below equivalent conditions are satis�ed,
H is said to be a normal subgroup, denoted H E G:

m a) aH = Ha for all a ∈ G.
m b) aHa−1 = H for all a ∈ G.
m c) a−1Ha = H for all a ∈ G.
m d) aHa−1 ⊆ H for all a ∈ G.
m e) aha−1 ∈ H for all a ∈ G and h ∈ H.

If G is abelian, then every subgroup is normal.

〈e〉 = {e} and G are (trivial) normal subgroups of G.

Z(G), the center of G, is a normal subgroup.

h ∈ Z(G) ⇐⇒ ∀g ∈ Ghg = gh

A group G is called simple if G 6= {e} and the only normal subgroups of G are G and {e}.
Any subgroup of index 2 is normal.

Quotient Group: Let H E G. Then the set of all right/left cosets of H, denoted G/H, forms a
group under the following operation:

(aH)(bH) = (ab)H ∀aH, bH ∈ G/H

|G/H| = [G : H]. If further G is �nite, then |G/H| = ||G|
|H| .

If G is abelian, then so is G/H.

If G is cyclic, then so is G/H.,

A quotient group of a non-abelian group can turn out to be abelian.

Every subgroup of G/N is of the form H/N for some subgroup H ≤ G containing N .

If N E H, N E G and N ≤ H ≤ G, then H/N ≤ G/N.

If N E H ≤ G, then H/N E G/N ⇐⇒ H E G.

Homomorphism: Let α : G → H be a function between groups. If α(ab) = α(a)α(b) for all
a, n ∈ G, then α is called a group homomorphism. Further, it is called a

monomorphism if α is injective (one-to-one),
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epimorphism if α is surjective (onto),

isomorphism if α is bijective, in which case we write G ' H to say that G is isomorphic
to H,

endomorphism if H = G, i.e. α : G→ G

automorphism if α : G→ G and α is bijective.

We also make the following de�nitions for a homomorphism:

Image: Im(α) = {h ∈ H : ∃g ∈ G, h = α(g)}
Kernel: ker(α) = {g ∈ G : α(g) = eH}

The following facts then hold for a group homomorphism:

1. α(eG) = eH

2. α(a−1) = α(a)−1

3. α(an) = α(a)n

4. If o(a) = n, then o(α(n))|n. In particular, o(α(a)) ≤ o(a), so if o(α(a)) = ∞,
then o(a) =∞.

5. If G′ ≤ G, then α(G′) ≤ H.

6. If H ′ ≤ H, then α−1(H ′) ≤ G. If further H ′ E H, then α−1(H ′) E G.

7. If G is abelian, then so is α(G).

8. If α is an epimorphism, i.e. it is surjective, then the image of G′ E G is also
normal in H, i.e. α(G′) E H.

9. Composition of homomorphisms is again a homomorphism.

10. Im(α) ≤ H and ker(α) E G.

For an isomorphism α : G→ H, the followings hold:

1. α−1 : H → G is an isomorphism.

2. G is abelian if and only if H is abelian.

3. For all a ∈ G, o(a) = o(α(a)).

4. G is cyclic if and only if H is cyclic.

Every �nite cyclic group of order n is isomorphic to (Zn,+) and every in�nite cyclic group
is isomorphic to (Z,+). (Map to their exponent!)

Fundamental Theorem of Homomorphisms: Let α : G → H be a group homomorphism
and g : G→ G/kerα ve the natural (canonical) homomorphism:

g : G→ G/kerα

a 7→ g(kerα)

Then there is a injective homomorphism ψ : G/kerα→ H such that α = ψ ◦ g:

ψ : G/kerα→ H

g(kerα) 7→ α(g)

Isomorphism Theorems: Let α : G→ H be a group homomorphism.

Ist Isomorphism Theorem: Then

G/kerα ' Im(G)

IInd Isomorphism Theorem: (Moving · to ∩) Let H ≤ G, K E G. Then
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1) H ∩K = {hk : h ∈ H, k ∈ K} E H

2) K E HK

3) H/H∩K ' HK/K

IIIrd Isomorphism Theorem: (Quotient group cancellation) Let H,K E G and H ≤
K. Then we have K E H and K/H E G/H as well, and further

G/H/K/H ' G/K

Group Action: Let G be a group and S be any non-empty set. An action (left action) of G on
S is de�ned as a function

• : G× S → S

(g, s) 7→ g • s

satisfying the given two properties:

1) g1 • g2 • s = (g1g2) • s for all g1, g2 ∈ G and s ∈ S.
2) e • s = s for all s ∈ S.

We make the following de�nitions for a group action:

Orbit: De�ne an equivalence relation ∼ as follows:

a ∼ b ⇐⇒ g • a = b for some g ∈ G

The equivalence classes of ∼ are called as the orbits of G on S, denoted by [a] or
Orb(a) for a ∈ S.

Stabilizer: For all a ∈ S, the stabilizer of a or the isotropy group of a, denoted Ga or
Stab(a), is given by

Ga = {g ∈ G : g • a = a}

Stabilizers are subgroups of G.

Orbit-Stabilizer Theorem: Let G act on S. For all a ∈ S,

[G : Ga] = |[a]|

and if further G is �nite, then

|[a]| = |G|
[G : Ga]

A result for �nite S is
|S| =

∑
a∈A⊂S

[G : Ga]

where A contains a single representative from each orbit.

Actions as Permutations: Let G act on S 6= ∅. Then this action induces a homomorphism
from G onto A(S), where A(S) is the group of all permutations of S, given by

ϕ : G→ A(S)
g 7→ Tg(a) :S → S

a 7→ g • a

Extended Cayley's Theorem: Let H ≤ G, S = {aH : a ∈ G}. Then there exists a homo-
morphism ψ from G so A(S) such that kerψ ⊆ H.
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External Direct Product: Let Gi be a family of groups for some �nite set of indices In 3 i.
Then G =

∏
Gi is a group with respect to the binary operation given by

(g1, g2, ..., gn)(h1, h2, ..., hn) = (g1h1, g2h2, ..., gnhn)

Hi = {(e1, ..., ai, ..., en) : ai ∈ Gi} are normal subgroups of G.

All g ∈ G can be expressed as g = h1h2...hn where hi ∈ Hi.

Hi ∩ (H1...Hi−1Hi+1...Hn) = {eG} for all i.
G = H1...Hn

Internal Direct Product: Let G be a group and Ni : i ∈ In be a �nite family of normal
subgroups of G with some index set In. Then G is called the internal direct product of
N1, ..., Nn if every g ∈ G can be uniquely expressed as a = a1a2...an where ai ∈ Ni.

G = N1N2...Nn

Ni ∩ (N1...Ni−1Ni+1...Nn) = {eG}
Ni∩Nj = {eG} whenever i 6= j. Consequently, aiaj = ajai for ai ∈ Ni, aj ∈ Nj whenever

i 6= j.

G '
∏
i∈In Ni = N1 ×N2 × ...×Nn under α : a = a1a2...an 7→ (a1, a2, ..., an)

o(g1, ..., gn) = lcm(o(g1), ..., o(gn))

Cyclic & Product Groups Theorem: Let G and H be �nite cyclic groups. Then G ×H is
cyclic if and only if |G| and |H| are relatively prime.

A corollary to this theorem is that if G is a �nite cyclic group and |G| = mn where m
and n are relatively prime, then G ' Zn × Zm.

Fundamental Theorem of Finite Abelian Groups: Every �nite abelian group is (isomor-
phic to) a direct product of cyclic groups of prime power order. Moreover, the number of
terms in the product and the orders of the cyclic groups are uniquely determined by the
group.

Conjugation: Let a, b ∈ G. We say that a and b are conjugates in G if there exists some g ∈ G
such that gbg−1 = a.

Notice that with the conjugation de�nition in mind, we can reinterpret the de�nition of
normal subgroups. A normal subgroup is a subgroup which is closed under conjuga-
tion, i.e. if H ≤ G is normal, then any conjugate aha−1 for any a ∈ G is contained in
H for all h ∈ H.

Conjugation Action: Let G act on itself by conjugation:

• : G×G→ G

(g, a) 7→ g • a = gag−1

Conjugacy Classes: (Orbits) The orbit of a ∈ G under the conjugation action is called
the conjugacy class of a, denoted [a] or Cl(a):

[a] = {gag−1 : g ∈ G}

If G is abelian,[a] = {a} as for all g ∈ G we have ga = ag ⇐⇒ gag−1 = a.
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Centralizer: (Stabilizers) Let H ≤ G and H act on G by conjugation:

• : H ×G→ G

(h, g) 7→ h • g = hgh−1

The stabilizer of a ∈ G under the conjugation action is called the centralizer of a in
H, written

CH(a) = {h ∈ H : hah−1 = a} = {h ∈ H : ha = ah}

If G = H, i.e. G is acting on itself via conjugation, then it is simply called the
centralizer of a, written

CG(a) = {g ∈ G : gag−1 = a} = {g ∈ G : ga = ag}

Notice that the centralizer, i.e. the stabilizer under the conjugation action, of some
element g ∈ G gives the set of elements in some H ≤ G that commute with g.

Normalizer: (Stabilizer of subgroups) Now let H ≤ G act on the set S of all subgroups of G:

• : H × S → S
(h,K) 7→ h •K = hKh−1 = {hkh−1 : k ∈ K}

Then the stabilizer of K in H is called the normalizer of K in H, written

NH(K) = {h ∈ H : hKh−1 = K} = {h ∈ H : hK = Kh}

If G = H, it is simply called the normalizer of K:

NG(K) = {g ∈ G : gKg−1 = K} = {g ∈ G : gK = Kg}

NG(K) is the largest set in which K is normal, i.e.

1. K E NG(K) and

2. K E G if and only if NG(K) = G.

Orbit-Stabilizer Theorem for Conjugation Action: Let G be a �nite group. Then

The number of elements in CG(x) for any x is [G : CG(x)], which divides |G|:

|[x]| = [G : CG(x)]
∣∣|G|

If [x1], ..., [xn] are are all of the conjugacy classes of G, then

|G| =
n∑
i=1

|[xi]| =
n∑
i=1

[G : CG(xi)]

The number of subgroups of G conjugate to K is [G : NG(K)] = |[K]|.

Class Equation: Recall that if a ∈ Z(G), i.e. commutes with every element in G, then [a] =
{a}, since gag−1 = a ⇐⇒ ga = ag for all g ∈ G. Therefore we can separate the members
of Z(G) out from the class equation above to obtain

|G| = |Z(G)|+
m∑
i=1

|[xi]| = |Z(G)|+
m∑
i=1

[G : CG(xi)] (Class Equation)

where xi's are elements not in Z(G) coming from di�erent conjugacy classes.
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Subgroup of Prime Order of Finite Abelian Groups: Let G be a �nite abelian group of
order n and p be a prime dividing n. Then G contains an element of order p, and hence
has a subgroup of order p.

Cauchy Theorem: (above but not abelian) Let G be a �nite group, not necessarily abelian, of
order n and p be a prime dividing n. Then G contains an element of order p, and hence
has a subgroup of order p.

Subgroup of Any Order of Finite Abelian Groups: Let G be a �nite group of order n and
m be a positive integer dividing n. Then G has a subgroup of order m.

p-groups: Let p be a prime. A group G is called a p-group if the order of each element of G is
a power of p. A subgroup H of a group is called a p-subgroup if H is a p-group.

A non-trivial group G is a p-group if and only if |G| = pk for some k ∈ Z+.

Let G be a p-group. Then Z(G) 6= {e}.
A group of order p2 for any prime p is abelian.

Sylow p-subgroup: Let G be a �nite group of order n = pkm where p is a prime not dividing
m, i.e. pk is the highest power of p in the prime decomposition of n. A subgroup of G of
order pk is called a Sylow p-subgroup.

Sylow Theorems:

Ist Sylow Theorem: (Existence) Let G be a �nite group of order n = pkm, where p is
prime, k,m ∈ Z+ and p and m are relatively prime. Then

(i) G has a subgroup of order pk for all 0 ≤ r ≤ k.
(ii) For each k with 1 ≤ r ≤ k − 1, a subgroup of order pr is a normal subgroup of a

subgroup of order pr+1, so, in short:

{e} = P0 E P1 E P2 E ... E Pk, |Pr| = pr

IInd Sylow Theorem: (Relation) Let G be a �nite group and let P1, P2 be two Sylow
p-subgroups. Then P1 and P2 are conjugates, i.e. there exists some g ∈ G such that
gP1g

−1 = P2.

IIIrd Sylow Theorem: (Number) Let G be a �nite group and let np denote the number
of Sylow p-subgroups of G. Then

(i) np ≡ 1 (mod p)

(ii) If |G| = pkm, p prime, m ∈ Z+ and p 6 |m, then np|m.

(iii) If P is any Sylow p-subgroup of G, then by the Orbit-Stabilizer Theorem for
conjugation action,

np = [G : NG(P )] = |[P ]|

where NG(P ) is the normalizer of P .

np = 1 for some Sylow p-subgroup P in and only if P E G.

If G is abelian, all subgroups of G are normal, therefore there is exactly one Sylow p-
subgroup for each p dividing |G|.

Sylow p-subgroups for di�erent primes can only have trivial intersection.
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2 Rings

Ring: Let R be a non-empty set and + and · be two binary operations on R. Then (R,+, ·) is
called a ring if

(R1) (R,+) is an abelian group.

(R2) · is associative.
(R3) For all a, b, c ∈ R, we have a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

The additive identity of R is denoted as 0R and is called the zero of the ring. For all
a ∈ R, 0Ra = a0R = 0R. A ring R is called commutative if · is commutative.

A ring R is called a ring with identity/unity if it has a multiplicative identity, denoted
1R. If it exists, it is unique.

For a ring R with identity, a non-zero element is called a unit if it has a multiplicative
inverse. For a unit, its multiplicative inverse is unique. If R∗ denotes all units of R
a ring with identity, then R∗ is non-empty (1R ∈ R∗) and if a, b ∈ R∗, then ab ∈ R∗.
Therefore R∗ is a group under ·.

For a ring, the expected identities hold:

� 0Ra = a0R = 0R.

� −ab = (−a)b = a(−b) and (−a)(−b) = ab.

� a(b− c) = ab− ac and (a− b)c = ac− bc.

Zero Divisor: Let a 6= 0R. Then a is called a zero divisor if there exists b 6= 0R such that
ab = 0R.

Integral Domain: A commutative ring with unity without zero divisors is called an integral
domain.

Division Ring: A ring (not necessarily commutative) with unity is called a division ring if every
element is a unit. Naturally, every division ring is a ring without zero divisors.

Field: A commutative division ring is called a �eld.

Being commutative, a �eld is therefore an integral domain.

It can be shown that every element in a �nite integral domain has a multiplicative inverse,
hence making it a �eld. In short, every �nite integral domain is a �eld.

Cancellation Equivalences: Let R be a ring. Then the followings are equivalent:

m a) If a, b ∈ R and ab = 0R, then a = 0R or b = 0R. (i.e. R has no zero divisors)

m b) If a, b ∈ R and x 6= 0R, then ax = bx (or equivalently (a − b)x = 0R) implies a = b
for all 0R 6= x in R.

m c) If a, b ∈ R and x 6= 0R, then xa = xb (or equivalently x(a − b) = 0R) implies a = b
for all 0R 6= x in R.

Characteristic: The characteristic of a ring R, denoted char(R), is the least positive integer
n such that nx = 0R for all x ∈ R, i.e. it is the order of the underlying additive abelian
group. If no such integer exists, then we say that R has characteristic zero.

An in�nite ring can have non-zero characteristic.

The characteristic of an integral domain R is either 0 or a prime.
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Subring: Let R be a ring and S ⊆ R. S is called a subring of R if S itself is a ring under the
same operations of R.

A subring of R is never empty as it always contains 0R.

S ⊆ R is a ring if and only if

1. S 6= ∅
2. x− y ∈ S for all x, y ∈ S, so it is an additive subgroup of R.

3. xy ∈ S for all x, y ∈ R, so it is closed under multiplication.

A subring with identity may have an identity di�erent than the identity of the whole ring.

Ideal: (Normal subgroup analogue) Let R be a ring and I ⊆ R be a subring. Then I is called

a left ideal if ∀r ∈ R, ∀i ∈ I, ri ∈ I.
a right ideal if ∀r ∈ R, ∀i ∈ I, ir ∈ I.
a (two-sided) ideal if ∀r ∈ R, ∀i ∈ I, ri, ir ∈ I.

A subset I ⊆ R is an ideal if and only if

1. I 6= ∅
2. x− y ∈ I for all x, y ∈ S, so it is an additive subgroup of R.

3. ri, ir ∈ I for all r ∈ R and for all i ∈ I, so it is closed under multiplication and it
is an ideal.

The only ideals of a division ring D are {0D} and D itself.

As every �eld is a (commutative) division ring by de�nition, the same goes for �elds: The
only ideals of a �eld F are {0F } and F itself.

For an ideal I of R the followings hold:

� 1R ∈ I ⇐⇒ I = R

� I 6= R ⇐⇒ I contains no units of R.

Ring Homomorphism: Let R and S be two rings. A function α : R→ S satisfying

∀a, b ∈ R α(a+ b) = α(a) + α(b)

∀a, b ∈ R α(ab) = α(a)α(b)

is called a ring homomorphism. Then the following properties hold:

1) For any r ∈ R and n ∈ Z+, α(nr) = nα(r) and α(rn) = α(r)n.

2) For A a subring of R, α(A) is a subring of S.

3) If A is further an ideal and α is onto, then α(A) is an ideal of S.

4) For B and ideal of S, α−1(B) is an ideal of R.

5) If R is commutative, then so is α(R).

6) If R has unity 1R, S 6= {0S} and α is onto, then α(1R) = 1S . If both R and S have
unity, α(1R) need not be 1S unless S is an integral domain or α is onto.

Kernel is de�ned with respect to the additive identity as

kerα = {r ∈ R|α(r) = 0S}

kerα is an ideal of R.
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Factor Ring: (Quotient group analogue) Let R be a ring and I be an ideal of R. The factor
ring R/I is de�ned as follows:

R/I = {r + I|r ∈ R}

which is the quotient group with respect to the underlying abelian additive group of R.
The operations on the factor ring are de�ned as follows:

(r + I) + (s+ I) := (r + s) + I

(r + I)(s+ I) := (rs) + I

If R is commutative, so is R/I.
If R has unity 1R, R/I has unity 1R + I.
α : r → r + I is called as the canonical homomorphism from R to R/I, with kerα = I.

Isomorphism Theorems: Let α : R→ S be a ring homomorphism.

I. Isomorphism Theorem: (Usual stu�) Then

R/kerα ' Im(α) = α(R)

II. Isomorphism Theorem: (Moving + to ∩) Let R be a ring, S a subring of R and I
an ideal of R. Then

1) S + I = {s+ i|s ∈ S, i ∈ I} is a subring of R and I is an ideal of S + I.

2) S ∩ I is an ideal of S.

3) S+I/I ' S/S∩I

III. Isomorphism Theorem: (Factor ring cancellation) Let R be a ring and I and J be
ideals of R with J ⊂ I, and J an ideal of I. Then I/J is an ideal of R/J with

R/J/I/J ' R/I

Notice that these isomorphism theorems are the exact analogues of the isomorphism the-
orems for groups. We have just taken the underlying additive abelian group of each
ring and replaced the term `normal subgroup' with `ideal'.

Principal Ideal: (Cyclic group analogy) Let R be a ring and a ∈ R. Then

Ra = {ra|r ∈ R}

is a left ideal of R, called a principal left ideal of R. A principal right ideal aR is de�ned
similarly.

Let R be a commutative ring with identity. An ideal I of R is called principal if there is
some a ∈ R that generates I, meaning

I = aR = Ra = (a)

Every ideal of Z is principal.

Maximal Ideal: Let R be a ring. An ideal M 6= R of R is called maximal whenever for any
ideal I of R with M ⊂ I ⊆ R, we have either M = I or I = R.

Let R be a commutative ring with identity and let M be an ideal of R. Then M is
maximal if and only if R/M is a �eld, so the followings are equivalent:

m a) R is a �eld.

m b) R has no non-trivial ideals.
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m c) {0R} is a maximal ideal of R.

Prime Ideal: Let R be a commutative ring. Then an ideal P of R is a prime ideal of R if
P 6= R and ab ∈ P implies a ∈ P or b ∈ P for all a, b ∈ R.

Let R be a commutative ring with unity. Then R/P is an integral domain if and only if P
is a prime ideal of R.

For R a commutative ring with identity, every maximal ideal of R is also a prime ideal of
R.

Polynomial Rings: Let R be a commutative ring with identity. Then

R[x] = {a0 + ...+ anx
n|n ≥ 0, ai ∈ R}

is called as the polynomial ring over R.

If R is commutative, then so is R[x].

If R has identity, so does R[x].

If R has no zero divisors, then R[x] has no zero divisors.

If R is an integral domain, then so is R[x].

If F is a �eld, then F [x] is an integral domain.

Degree: Let R be a commutative ring with identity, and R[x] the polynomial ring over R. For
all non-zero polynomials f ∈ R[x], the degree of f is de�ned as follows:

deg(f) = n ⇐⇒ f(x) = a0 + ...+ anx
n, an 6= 0

For R a polynomial ring and f, g ∈ R[x], we have

deg(fg) = deg(f) + deg(g)

Monic Polynomial: Let R be a commutative ring with identity. For f(x) = a0 + ...+ anx
n ∈

R[x], an 6= 0, the leading coe�cient is de�ned to be an. If we have an = 1R, then f is said
to be a monic polynomial.

Units in F [x]: For a �eld F , the only units in F [x] are the non-zero constant polynomials. No
polynomial of positive degree (deg ≥ 1) can have an inverse in F [x], hence F [x] is not a
�eld.

Division Algorithm for Polynomials: Let F be a �eld and let f, g ∈ F [x] with g 6= 0. Then
there are polynomials q, r ∈ F [x] satisfying

f = qg + r

where either r = 0 or deg(r) < deg(g). The polynomials q, called the quotient, and r,
called the remainder, are uniquely determined for each 0 6= g, f ∈ F [x].

Root/Zero: Let F be a �eld and f(x) ∈ F [x]. For all r ∈ F , de�ne f(r) as expected. If for
some r ∈ F we have f(r) = 0F , we call r a root or a zero of f(x).

Remainder Theorem: Let R be a commutative ring with identity. For all f ∈ F [x] and a ∈ F ,
there exists some g(x) ∈ F [x] such that

f(x) = (x− a)g(x) + f(a)

For f ∈ F [x] and a ∈ F , (x− a) divides f(x) if and only if a is a root of f .
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PID: An integral domain R is a Principal Ideal Domain (PID) if every ideal I in R is a principal
ideal, meaning there exists some a ∈ R such that I = (a) = aR.

Divisibility & Associates: Let R be an integral domain and let a, b ∈ R. We say that b
divides a, denoted b|a, if there exists some c ∈ R such that a = bc. (0R|0r is allowed.) If
further this c is a unit (i.e. has a multiplicative inverse), then we say that b is an associate
of a, denoted a ∼ b. The following properties then hold:

1) a ∼ a
2) a ∼ b⇒ b ∼ a
3) a ∼ b ∧ b ∼ c⇒ a ∼ c (1-3 make ∼ an equivalence relation)

4) ∈ R a|a
5) a|b ∧ b|a⇒ a ∼ b
6) a|b ∧ b|c⇒ a|c
7) b|a⇒ (a) ⊂ (b)

8) a ∼ b ⇐⇒ (a) = (b) (use 7)

9) b is a proper divisor of a ⇐⇒ aR ( bR ( R or equivalently (a) ( (b) ( R

10) u ∈ R is a unit ⇐⇒ u ∼ 1 ⇐⇒ uR = (u) = R ⇐⇒ u|1R

Proper Divisor: Let R be an integral domain and let a, b ∈ R. Then b is said to be a proper
divisor of a if b|a and b is neither a unit nor an associate of a, i.e.

a) b|a
b) b is not a unit

c) b 6∼ a

Irreducibility: Let R be an integral domain. An element q ∈ R is said to be irreducible if
q 6= 0, q is not a unit and q has no proper divisors, i.e. q = ab implies either a or b is a
unit.

Any associate of an irreducible element is also irreducible.

Gauss Lemma: Suppose that f ∈ Z[x] ⊂ Q[x] is a monic polynomial of positive degree.
Then f is irreducible in Z[x] if and only if it is irreducible in Q[x].

2nd and 3rd Degree Polynomials: Let F be a �eld and let f ∈ F [x] be a polynomial
of degree 2 or 3. Then f is irreducible over F if and only if F has no roots in F .

Candidate Rational Roots: Let f(x) = a0 + · · · + anx
n ∈ Z[x] be of degree n and

a0 6= 0. Let u/v ∈ Q be a root of f(x) where u and v are relatively prime. Then u|a0
and v|an.

Linear Test: Let F be a �eld and 0 6= a, b ∈ F . Then f(x) ∈ F [x] is irreducible if and
only if f(ax+ b) ∈ F [x] is irreducible.

Reduction mod p / Mod p Test: Let f(x) ∈ Z[x] be a monic polynomial of positive
degree and p be a prime integer. Set fp(x) ∈ Zp[x] to be the reduction of f modulo p,
i.e. take the coe�cient modulo p. If fp ∈ Zp[x] is irreducible, then f ∈ Z is irreducible.
The converse need not be true!

Eisenstein's Criterion: Let f(x) = a0+ · · ·+anxn ∈ Z[x]. If there exists a prime integer
p such that

a) p | ai for i = 0, . . . , n− 1

b) p 6 | an
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c) p2 6 | a0
then f is irreducible in Q.

Maximality in a PID: Let R be a PID and let I 6= {0R} be an ideal of R. Then I is maximal
if and only if the generator of I is irreducible, i.e. I = (p) where p is irreducible.

Prime Element: Let R be a commutative ring with identity and p ∈ R, p 6= 0, and p not a
unit. Then p is a prime element of R if

p|ab⇒ p|a ∨ p|b

In any integral domain, a prime element is irreducible.

If further we are in a PID, every irreducible element is also a prime element. Therefore
in a PID, an element p is irreducible if and only if it p is a prime element.

In a commutative ring with identity R, p ∈ R is a prime element if and only if pR is a
non-zero prime ideal in R.

If further we are in a PID, an ideal is maximal if and only if it is a prime ideal.

Equivalent Factorizations: Let R be an integral domain, 0 6= a ∈ R and a not a unit. Two
factorizations

a = p1p2 . . . pn = q1q2 . . . qk

where pi and qj are irreducible elements are said to be equivalent if n = k and there is a
one-to-one correspondence between the factors pi and qj such that corresponding factors
are associates.

UFD: An integral domain R is called a Unique Factorization Domain (UFD) if every non-zero,
non-unit element a ∈ R may be represented as a product of irreducible elements in R and
any two such representations of an element a ∈ R are equivalent.

Every PID is a UFD.

If F is a �eld, then the polynomial domain F [x] is a UFD.

If A is a UFD, then so is A[x].

If A is a UFD, then every irreducible element a ∈ A is prime. Then as every prime element
is irreducible in all integral domains, in a UFD, an element a ∈ A is prime if and only
if it is irreducible.

Euclidean Domains: Let A be an integral domain and let δ : A − {0A} → Z+ ∪ {0} be a
function such that

1) For all a, b ∈ A − {0A}, if b|a then δ(b) < δ(a). Equivalently for all a, b ∈ A − {0A},
δ(a) ≤ δ(ab).

2) For all a, b ∈ A− {0A} with b 6= 0A, there exists q, r ∈ A such that a = bq + r where
either r = 0 or δ(r) < δ(b).

Then δ is called a Euclidean norm or valuation on A. The integral domain A forms a
Euclidean domain (ED) with respect to the Euclidean norm δ.

Every Euclidean domain is a PID, so we have the following picture:

ED⇒ PID⇒ UFD

Let R be a ED and 0 6= a ∈ R. Then x is a unit if and only if δ(x) = δ(1).
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Gaussian Integers: The subset Z[i] = {a + bi : a, b ∈ Z} of the complex numbers is called
the set of Gaussian integers. As C is a �eld and hence an integral domain, Z[i] is also an
integral domain.

The units of Z[i] are ±1 and ±i.
The ring Z[i] is a ED, hence a PID and hence a UFD.
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