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1 Uniqueness of the Determinant

1.1 Multilinear Algebra

Free Vector Space: Let F be a vector space and S any set. The subset F(S) of the vector
space Fun(S, F ) will be de�ned as follow

F(S) = {f ∈ Fun(S, F ) : there exists �nitely many s ∈ S such that f(s) 6= 0}

F(S) is called as �the set of functions from S to F with �nite support�.

1



1 UNIQUENESS OF THE DETERMINANT

Subspace: F(S) is a subspace of Fun(S, F ), called the free vector space over S with
F -coe�cients.

An alternative notation for the elements of F(S): Suppose f ∈ F(S) and f is non-zero
only at {s1, . . . , sm}, and that f(s1) = c1, . . . , f(sm) = cm. Then denote f by

f = c1s1 + c2s2 + · · ·+ cmsm

and remember that this is just a formal expression (sum)! For example, if

g = d1s1 + · · ·+ dnsn

then

f + g = (c1 + d1)s1 + · · ·+ (cm + dm)sm + dm+1sm+1 + · · ·+ dnsn

et cetera.

Basis: Say F is a �eld, S is a set, F(S) is the free vector space as above. Then

B = {1s}s∈S

is a basis for F(S).

Universal Property: Let F be a �eld, S any set and V a vector space on F . Suppose
ϕ : S → V is any function. Then there exists a unique, linear transformation Tϕ :
F(S)→ V such that

Tϕ(1s) = ϕ(S) ∀s ∈ S

Tensor Product: Let V,W be vector spaces over a �eld F , with F(V ×W ) the free vector
space of their Cartesian product. Let U be the subspace of F(V ×W ) spanned by all the
elements of the following form:

i) 1(v1 + v2,w)− 1(v1,w)− 1(v2,w)
ii) 1(v,w1 + w2)− 1(v,w1)− 1(v,w2)
iii) 1(cv,w)− c(v,w)
iv) 1(v, cw)− c(v,w)

Then the quotient space
V ⊗W = F(V×W )/U

is called the tensor product of the vector spaces V and W . A typical element in the tensor
product is denoted as follows:∑

i

civi ⊗wi :=
∑
i

ci(vi,wi)

Properties: The elements that are �quotiened-out� make sure the following properties
hold:

i) (v1 + v2)⊗w = v1 ⊗w + v2 ⊗w
ii) v ⊗ (w1 + w2) = v ⊗w1 + v ⊗w2

iii) (cv)⊗w = c(v ⊗w)
iv) v ⊗ (cw) = c(v ⊗w)

so the elements of the tensor product satisfy linearity in both of their components!

Dimension and Basis: Say V andW are �nite dimensional vector spaces over some �eld
F and their bases are {v1, . . . , vn} and {w1, . . . , wm}. Then

B = {vi ⊗ wj}1≤i,j≤n

is a basis for V ⊗W , and hence

dim(V ⊗W ) = nm = dim(V ) dim(W )
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1 UNIQUENESS OF THE DETERMINANT

Bilinear Map: Say V , W and Z are vector spaces over some �eld F . Then a map
ψ : V × W → Z is called bilinear if it satis�es linearity in both of its arguments,
meaning

ψ(c1v1 + c2v2, w) = c1ψ(v1, w) + c2ψ(v2, w)

ψ(v, c1w1 + c2w2) = c1ψ(v, w1) + c2ψ(v, w2)

The map de�ned by ψ(v, w) = v ⊗ w is naturally bilinear.

Universal Property of the Tensor Product: Say V , W and Z are vector spaces over
some �eld F and ψ : V ×W → Z is a bilinear map. Then, there exists a unique linear
transformation Tψ : V ⊗W → Z such that

Tψ(v ⊗ w) = ψ(v, w) ∀v ∈ V ∀w ∈W

Symmetric Power: First we work with the symmetric square, then move on to higher powers.

Symmetric Square: Let V be a vector �eld over some �eld F . The second symmetric
power of V , or its symmetric square is de�ned as

Sym2(V ) = V⊗V/U

where U is the subspace of V ⊗ V spanned by elements of the form

v ⊗ w − w ⊗ v

This ensures that in this quotient space, we have

v ⊗ w + U = w ⊗ v + U

where the equivalence class v ⊗ w + U is denoted by vw.

Dimension and Basis: For V = Span({v1, v2, . . . , vn}) meaning dim(V ) = n, the
basis for Sym2(V ) is given by

B = {vivj}1≤i≤j≤n

because remember that vivj = vjvi, we cannot include both of them, and one
way to get rid of the unnecessary elements is to impose a partial ordering on the
indices. And so, we obtain

dim(V ) =
n(n+ 1)

2

Universal Property: Say V and Z are vector spaces over some �eld F and ψ :
V 2 → Z is a bilinear map such that ψ(v, w) = ψ(w, v) for all v, w ∈ W . Then,
there exists a unique linear transformation Tψ : Sym2(V )→ Z such that

Tψ(vw) = ψ(v, w) ∀v, w ∈ V

Higher Symmetric Powers: Let V be a vector �eld over some �eld F . The k-th sym-
metric power of V is de�ned as

Symk(V ) = V ⊗k/U

where
V ⊗k = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times
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1 UNIQUENESS OF THE DETERMINANT

(the order of tensor products is not important, i.e. we consider upto isomorphism)
and U is the subspace of V ⊗k spanned by elements of the form

u⊗ · · · ⊗ (v ⊗ w − w ⊗ v)︸ ︷︷ ︸
this part can be anywhere

⊗ · · · ⊗ r

This ensures that in this quotient space, we have

v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk + U = v1 ⊗ · · · ⊗ v(i+1) ⊗ vi ⊗ · · · ⊗ vk + U

where the equivalence class v1⊗· · ·⊗vi⊗v(i+1)⊗· · ·⊗vk+U is denoted by v1v2 . . . vk.
Notice that because we satisfy equality for adjacent transpositions, we satisfy equality
for all permutations as any permutation can be written as a composition of adjacent
transpositions.

Dimension and Basis: For V = Span({v1, v2, . . . , vn}) meaning dim(V ) = n, the
basis for Symk(V ) is given by

B = {vi1vi2 . . . vik}1≤i1≤i2≤···≤ik≤n

And so, we obtain

dim(Symk(V )) =
n(n+ 1) . . . (n+ k − 1)

k!
=

(
n+ k − 1

k

)
which is the total number of unordered repeated k-selections of n objects, and
that makes sense.

Exterior Power: Again, �rst the exterior square, then higher exterior powers.

Exterior Square: Say V is a vector space over some �eld F . The second exterior power
(or the second alternating power) is de�ned as

Alt2(V ) = V⊗V/U

where U is the subspace of V ⊗ V spanned by elements of the form

v ⊗ w + w ⊗ v

This ensures that in this quotient space, we have

v ⊗ w + U = −(w ⊗ v) + U

where the equivalence class v ⊗ w + U is denoted by v ∧ w.
Dimension and Basis: For V = Span({v1, v2, . . . , vn}) meaning dim(V ) = n, the

basis for Alt2(V ) is given by

B = {vivj}1≤i<j≤n

because remember that vi ∧ vj = −vj ∧ vi so we cannot include both of them.
Also, vi ∧ vi = −vi ∧ vi ⇒ vi ∧ vi = 0, so we don't have the �wedge squares� of
the elements as well. One way to get rid of the unnecessary elements is to impose
a strict ordering on the indices. And so, we obtain

dim(V ) =
n(n− 1)

2
=

(
n

2

)
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1 UNIQUENESS OF THE DETERMINANT

Universal Property: Say V and Z are vector spaces over some �eld F and ψ :
V 2 → Z is a bilinear map such that ψ(v, w) = −ψ(w, v) for all v, w ∈ W . Then,
there exists a unique linear transformation Tψ : Alt2(V )→ Z such that

Tψ(v ∧ w) = ψ(v, w) ∀v, w ∈ V

Higher Exterior Powers: Let V be a vector �eld over some �eld F . The k-th exterior
power of V is de�ned as

Altk(V ) = V ⊗k/U

where
V ⊗k = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

k times

and U is the subspace of V ⊗k spanned by elements of the form

u⊗ · · · ⊗ (v ⊗ w + w ⊗ v)︸ ︷︷ ︸
this part can be anywhere

⊗ · · · ⊗ r

This ensures that in this quotient space, we have

v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk + U = −(v1 ⊗ · · · ⊗ v(i+1) ⊗ vi ⊗ · · · ⊗ vk) + U

where the equivalence class v1⊗· · ·⊗vi⊗v(i+1)⊗· · ·⊗vk+U is denoted by v1∧v2∧· · ·∧vk.
Notice that each adjacent transposition �ips the sign once, and so we obtain a general
formula using the sign of the permutations as

v1 ∧ v2 ∧ · · · ∧ vk = sgn(σ)vσ(1) ∧ vσ(2) ∧ · · · ∧ vσ(k)

where σ ∈ Sym(k) is a permutation, and its sign sgn(σ) is given by

sgn(σ) =

{
1, if σ is a composition of an even number of transpositions

−1, if σ is a composition of an odd number of transpositions

Dimension and Basis: For V = Span({v1, v2, . . . , vn}) meaning dim(V ) = n, the
basis for Altk(V ) is given by

B = {vi1 ∧ vi2 ∧ · · · ∧ vik}1≤i1<i2<···<ik≤n

And so, we obtain

dim(Altk(V )) =
n(n− 1) . . . (n− k + 1)

k!
=

(
n

k

)
which is the total number of unordered unrepeated k-selections of n objects, and
that makes sense.
One interesting thing to note is that
i) We cannot arbitrarily increase the dimension of an exterior power of a �nite

dimensional space, as it follows the binomial coe�cients. For dim(V ) = n,
the exterior power Altk(V ) reduces to the null vector space for k > n as we
necessarily repeat at least one basis element of V in all of the basis elements
of Altk(V ), so all the basis elements must equal to the zero vector. This is
not the case for the symmetric power Symk(V ), as its dimensionality always
increases with k.

ii) Because the dimensionality of Altk(V ) follows the binomial coe�cients
(
n
k

)
,

it decreases after some point and eventually becomes 1 again.
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1 UNIQUENESS OF THE DETERMINANT

1.2 The True Nature of the Determinant

Determinant: Let F be a �eld and n ∈ Z+. Then, the determinant is a function over matrices
det : Mn×n(F )→ F given for each A = (aij) ∈Mn×n(F ) as

det(A) =
∑

σ∈Sym(n)

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n)

Determinants of the Elementary Matrices:

Row multiplication: The only non-zero permutation is the identity permutation.

(cRi → Ri) ⇒ E =



1
. . .

1
c

1
. . .

1


⇒ det(E) = c

Row switching: The only non-zero permutation is the single relevant transposition (σ =
(i j)), which has a negative sign.

(Ri ↔ Rj) ⇒ E =



1
. . .

0 · · · 1
1

...
. . .

...
1

1 · · · 0
. . .

1


⇒ det(E) = −1

Row sum: The only non-zero permutation is the identity permutation, all others that
possibly incorporate the c entry have zero multiplicand.

(cRi +Rj → Rj) ⇒ E =



1
. . .

1
...

. . .

c . . . 1
. . .

1


⇒ det(E) = 1

Properties of Determinant: Recall that applying an elementary row operation on a matrix
is equivalent to multiplying it from the left with the relevant elementary matrix.
All the properties of the determinant that are skipped before are proven using this de�nition
and the elementary matrices above.

- Transpose:
det(A) = det(AT )
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2 STRUCTURE OF LINEAR OPERATORS IN FINITE VECTOR SPACES

- Multiplicativity:
det(AB) = det(A) det(B)

- Row/column expansion formula:

det(A) =
n∑
i=1

(−1)(i+j)aij det(Aij) =
n∑
j=1

(−1)(i+j)aij det(Aij)

Determinant and the Exterior Power: Write A =
[
RT1 RT2 · · · RTn

]T
as a stack of its

rows. Then we can consider det as an n-ary function of these rows, and it satis�es the
following properties:

- The determinant is multilinear on the rows:∣∣∣∣∣∣∣∣∣∣∣∣

R1
...

c1Ri + c2R̂i
...
Rn

∣∣∣∣∣∣∣∣∣∣∣∣
= c1

∣∣∣∣∣∣∣∣∣∣∣∣

R1
...
Ri
...
Rn

∣∣∣∣∣∣∣∣∣∣∣∣
+ c2

∣∣∣∣∣∣∣∣∣∣∣∣

R1
...

R̂i
...
Rn

∣∣∣∣∣∣∣∣∣∣∣∣
- The determinant is alternating on the rows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1
...
Ri
...
Rj
...
Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R1
...
Rj
...
Ri
...
Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
- det(I) = 1

The universal property of the exterior product ensures that the only function that satis�es
all three of these conditions must be the determinant function, which is kinda really cool.

2 Structure of Linear Operators in Finite Vector Spaces

2.1 Polynomial Rings in 1 Variable Over a Field

Polynomial Ring: Say F is a �eld. Then F [x] denotes the set of all polynomials in 1 variable
(x) with coe�cients from F . F [x] has polynomial addition and polynomial multiplication
on it, and these two operations satisfy the axioms of a commutative ring with identity.

Degree: Let p ∈ F [x]. Then p(x) = c0x
n + c1x

n−1 + · · ·+ cn with c0 6= 0. Then deg(p) = n.

Units: An element of a ring is called a unit if it has a multiplicative inverse.

Units in F [x]: The only units in F [x] are the constant (i.e. of degree 0) non-zero poly-
nomials, i.e. F\{0}.
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2 STRUCTURE OF LINEAR OPERATORS IN FINITE VECTOR SPACES

Polynomial Division: Say f, g ∈ F [x] and g 6= 0. Then, there exist unique polynomials
q, r ∈ F [x] such that deg(r) < deg(g) and

f = q ∗ g + r

The Euclidean Algorithm: Take some non-zero f, g ∈ F [x] and apply the division algorithm
repeatedly:

f = q1 ∗ g + r1 deg(r1) < deg(g)

g = q2 ∗ r1 + r2 deg(r2) < deg(r1)

r1 = q3 ∗ r2 + r3 deg(r3) < deg(r2)

...

rm−2 = qm ∗ rm−1 + rm deg(rm) < deg(rm−1)

rm−1 = qm+1 ∗ rm + 0 deg(r3) < deg(r2)

The process must end as at each step we �consume� the degree of the dividend by taking it
as the previous step's remainder. Notice that all these qi and rj polynomials are uniquely
determined by f and g, and the rm obtained

- divides both f and g and
- it divides any h ∈ F [x] such that h divides both f and g. This rm

Greatest Common Divisor: This rm polynomial is called the greatest common divisor
of f and g. For this greatest common divisor, there exist unique polynomials a, b ∈
F [x] such that

rm = a ∗ f + b ∗ g

Irreducibility: A polynomial f ∈ F [x] is said to be irreducible if it is impossible to write
f = g.h with deg(g),deg(h) < deg(f).

Prime: A polynomial f ∈ F [x] is said to be prime if

f |g.h ⇒ f |g or f |h ∀g, h ∈ F [x]

Unique Factorization: Any polynomial f ∈ F [x] with deg(f) > 0 can be expressed as a
product or irreducible (i.e. prime) polynomials

f = q1q2 · · · qm

which is unique up to reordering and multiplication by units. This makes F [x] a Unique
Factorization Domain (UFD).

Ideals in F [x]: Let R be a commutative ring with identity. A subset I ⊆ R is said to be an
(double-sided) ideal of R if

i) ∀a, b ∈ I, a+ b ∈ I
ii) ∀a ∈ I∀r ∈ R, ar ∈ I

A principle ideal generated by some r ∈ R is

(r) = {p ∈ R : p = rq for some q ∈ R}

Ideals in F [x]: Any ideal of the ring F [x] is a principle ideal. This makes F [x] a Principle
Ideal Domain (PID).
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2 STRUCTURE OF LINEAR OPERATORS IN FINITE VECTOR SPACES

Irreducible Polynomials in. . .

C[x] or the Fundamental Theorem of Algebra: Other than linear polynomials, there
aren't any. Equivalently, any non-constant polynomial in C[x] has a root.

R[x]: There exists no irreducible polynomial of odd degree in R[x].
Any non-constant polynomial in R[x] can be written as a product of linear and/or
quadratic irreducible factors.

F [x] for F = Q or Finite F : There exist irreducible polynomials of any degree in such a
case.

2.2 Eigenvectors, Eigenvalues & Beyond

Eigenvectors & Eigenvalues: Let V be a vector space over a �eld F and T : V → V be a
linear operator. A vector v ∈ V is called an eigenvector of T if

i) v 6= ~0
ii) Tv = λv for some λ ∈ F

λ is called the eigenvalue associated to v.
Let AT be the matrix representation of the operator T in some (any) basis. Then the
eigenvalues of T are found by solving

det(AT − λI) = 0

for λ in the �eld. Once you have the eigenvalues, solve the system

(AT − λI)[v]B = ~0

for each eigenvalue λ to �nd the eigenvectors.

Linear Independence of Eigenvectors: The eigenvectors corresponding to distinct eigen-
values are linearly independent, so the sum of eigenspaces (corresponding to di�erent
eigenvalues) is really a direct sum:

Wλ1 +Wλ2 + · · ·+Wλk = Wλ1 ⊕Wλ2 ⊕ · · · ⊕Wλk

meaning

Wλi ∩
(
Wλ1 + · · ·+Wλi−1

+Wλi+1
+ · · ·+Wλk

)︸ ︷︷ ︸
the sum without Wλi

= {~0} ∀i = 1, . . . , k

Characteristic Polynomial: The polynomial

∆T (x) = det(xI −AT )

is called the characteristic polynomial of T .
Properties:

- deg(∆T (x)) = n = dim(V )
- ∆T (x) is a monic polynomial.
- ∆T (x) does not depend on the choice of basis.
- Eigenvalues are the roots of the characteristic polynomial.
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2 STRUCTURE OF LINEAR OPERATORS IN FINITE VECTOR SPACES

- Two coe�cients, the constant and the �rst (except the leading coe�cient which is
always 1) of the characteristic polynomial are very easy to compute:

∆T (x) = xn − Tr(AT )xn−1 + · · ·+ (−1)n det(AT )

If the characteristic polynomial splits into linear factors as

∆T (x) = (x− λ1)m1 · · · (x− λk)mk

where λi ∈ F are distinct eigenvalues with multiplicity mi ∈ N+, then

Tr(AT ) = −m1λ1 + · · ·+mkλk det(AT ) = λm1
1 · · ·λ

mk
k

Eigenspaces: Let T : V → V be a linear operator and λ an eigenvalue of T . Then

Wλ = ker(T − λI) = {Eigenvectors of T with eigenvalue λ} ∪ {~0}

is called the eigenspace of T associated to the eigenvalue λ, which is a subspace of V .
For any eigenvalue λ, dim(Wλ) ≥ 1.

Polynomial of Operators: Let T : V → V be a linear operator, and p(x) ∈ F [x] with

p(x) = cmx
m + cm−1x

m−1 + · · ·+ c1x+ c0

We can then de�ne an operator p(T ) : V → V by

p(T ) = cmT
m + cm−1T

m−1 + · · ·+ c1T + c0

where T k = T ◦ · · · ◦ T︸ ︷︷ ︸
k times

, which is again a linear operator.

Properties:

- If AT is the matrix representation of T , then of course the matrix representation of
p(T ) becomes p(AT ).

- If p(x) = q1(x)q1(x) for some q1(x), q2(x) ∈ F [x], then p(T ) = q1(T ) ◦ q2(T ).
- If λ is an eigenvalue of T with eigenvector v, then p(λ) is an eigenvalue of p(T ) with
eigenvector v.

Invariant Subspaces: Let T : V → V be a linear operator. A subspace W of V is said to be
T -invariant or called an invariant subspace of T if for all w ∈W , Tw ∈W .
W = V andW = {~0} are trivial invariant subspaces for all linear operators. An eigenspace
of an operator T is T -invariant.

Restrictions to and Quotient by Invariant Subspaces: Let V be a vector space, T : V →
V a linear operator and W a T -invariant subspace of V . Then T induces two linear
operators: Its restriction onto T

T |W : W →W

and the one on the space with W quotiened-out:

T : V/W → V/W

T (v +W ) 7→ T (v) +W

Matrix Representations: Let V be an n-dimensional vector space, T : V → V a linear
operator and W a T -invariant subspace of V , with a basis {w1, · · · , wk} (0 < k < n
for non-trivial subspaces). Complete this basis to a basis of the whole V to obtain
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2 STRUCTURE OF LINEAR OPERATORS IN FINITE VECTOR SPACES

B = {w1, · · · , wk, vk+1, · · · , vn}. Then under this basis, the matrix representation of
T , namely [T ]BB has the following form:

[T ]BVBV =

[
Ak×k Ck×(n−k)

0(n−k)×k B(n−k)×(n−k)

]

According to this form, then,

- the matrix representation of T |W with respect to the basis {w1, · · · , wk} is A,
and

- the matrix representation of T with respect to the basis {vk+1 +W, · · · , vn +W}
is B.

Characteristic Polynomial: Suppose we have a matrix (hence a linear operator)

D =

[
Ak×k Ck×(n−k)

0(n−k)×k B(n−k)×(n−k)

]
with respect to some basis B, so the subspace generated by the �rst k basis vectors is
invariant under this matrix. Then

∆D(x) = ∆A(x)∆B(x)

This implies, according to our restriction and quotient operators as de�ned above,
that

∆T (x) = ∆T |W (x)∆T (x)

Dimension of Eigenspaces: Say for a linear operator T on an n-dimensional vector
space V , λ is an eigenvalue. Then write

∆T (x) = (x− λ)mq(x)

where m > 0 and q(λ) 6= 0 so m is the maximal exponent of (x− λ). Then

1 ≤ dim(Wλ) ≤ m

Diagonalizability: Let T be a linear operator on an n-dimensional vector space V , and write

∆T (x) = (x− λ1)m1 · · · (x− λk)mkq(x)

where q(x) contains no linear factors, and the linear factor decomposition is maximal.
Upon this setup, there are several equivalent de�nitions of diagonalizability. T is said to
be diagonalizable if

i) n = m1 + · · ·+mk and dim(Wλi) = mi for all i = 1, . . . , k.
ii) V = Wλ1 ⊕ · · · ⊕Wλk

iii) There exists a basis B for V such that [T ]BB is a diagonal matrix.
iv) There exists a set {v1, . . . , vn} of n linearly independent eigenvectors of T .

Matrix Representations: Diagonalizability for a matrix A (corresponding to a linear
operator) is de�ned as being similar to a diagonal matrix, i.e. there exists a diagonal
matrix D and an invertible matrix P such that

A = PDP−1

In this case D contains the eigenvalues of A along its diagonal, and P is a matrix of
(column) eigenvectors, with matching orderings (i.e. dii is the eigenvector of the ith
column of P ).
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2 STRUCTURE OF LINEAR OPERATORS IN FINITE VECTOR SPACES

Integer Powers and Roots of Diagonalizable Matrices: If A is a diagonalizable ma-
trix, similar to a diagonal matrix D through the invertible matrix P , then we can
calculate its integer powers easily by computing

An = (PDP−1)n = PDnP−1

which is easy as taking the powers of a diagonal matrix is easy.
For the integer roots, the same logic applies but only in reverse: This time, we need
to �nd a diagonal matrix D̃ such that (D̃)n = D which amounts to computing the
integer roots of the diagonal entries of D, so that we can set A1/n = PD̃P−1 to have

(A1/n)n = (PD̃P−1)n = P (D̃)nP−1 = PDP−1 = A

Simultaneous Diagonalization: Let V be a �nite-dimensional vector space over a �eld
F . Say A is a set whose elements are commuting diagonalizable linear operators
Ti : V → V such that TiTj = TjTi for all i, j. Then, there exists a basis B of V
such that all of the matrix representations [T ]BB are diagonal matrices. Then the
operators in A are said to be simultaneously diagonalizable, and the basis vectors are
eigenvectors for all Ti operators at the same time.

Not being Diagonalizable:

Su�cient Conditions: There are two reasons why an operator may not be diagonaliz-
able, one of which is circumventable:

1. The characteristic polynomial ∆T (x) may contain irreducible factors other than
the linear ones. This is circumvented by viewing T in the vector space of the
algebraic closure of the original vector space.
More dangerously,

2. Even if ∆T (x) splits into linear factors, say

∆T (x) = (x− λ1)m1 · · · (x− λk)mk

one of its eigenspaces may be de�cient in dimension, i.e. there may exist some
Wλi such that dim(Wλi) < mi.

Necessary Conditions: Say T is a linear, non-diagonalizable operator on an n-dimensional
vector space with

∆T (x) = (x− λ1)m1 · · · (x− λk)mk

Then, there exists some mi  1, meaning T has at least one repeated eigenvalue.

Cayley-Hamilton Theorem: Say T is a linear operator on an n-dimensional vector space with
characteristic polynomial ∆T (x). Then

∆T (T ) = 0

�Every linear operator on a �nite dimensional vector space satis�es its own characteristic
polynomial.�
Equivalently, if AT is the matrix representation of T , we obtain

∆T (AT ) = 0n×n

Minimal Polynomial: Say T is a linear operator on an n-dimensional vector space. Then
de�ne JT ⊂ F [x] as

JT = {p(x) ∈ F [x] : p(T ) = 0}
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3 INNER PRODUCT

then JT is an ideal of F [x], and as F [x] is a PID, JT is a principle ideal. This means there
exists a unique monic polynomial, say δT (x), generating JT :

JT =
(
δT (x)

)
where δT (x) is the polynomial of least degree for which δT (T ) = 0.

Properties:

- As ∆T (x) ∈ JT by Cayley-Hamilton Theorem, we have

δT (x)|∆T (x)

- In turn, we also have
∆T (x)| (δT (x))n

meaning every irreducible factor of ∆T (x) appears at least once in δT (x).

Minimal Polynomial & Diagonalizability: An operator T is diagonalizable if and only
if its minimal polynomial is a product of distinct linear factors.

3 Inner Product

3.1 Elements of a Vector Space

Inner Product on a Real Vector Space: Let V be a vector space over R. An inner product
on V is a function V × V → R taking a pair (v, w) to a real number 〈v, w〉, that satis�es
the following conditions:

(1) 〈c1v1 + c2v2, w〉 = c1 〈v1, w〉+ c2 〈v2, w〉 for all c1, c2 ∈ R and v1, v2, w ∈ V .
(2) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
(3) 〈v, v〉 ≥ 0 for all v ∈ V , with equality happening if and only if v = ~0.

Norm/Length: Let (V, 〈, 〉) be a real inner product space. Then

‖v‖ =
√
〈v, v〉

is a valid norm de�nition.

Unit Vector: A vector of norm 1 is called a unit vector.

Orthogonality: Let (V, 〈, 〉) be a real inner product space. Two vectors v, w ∈ V are said to be
orthogonal or perpendicular, denoted v ⊥ w, if

〈v, w〉 = 0

Orthogonal Complement: Let (V, 〈, 〉) be a real inner product space, and say S ⊂ V is
a non-empty subset. The orthogonal complement of S is then de�ned as

S⊥ = {v ∈ V : ∀s ∈ S 〈v, s〉 = 0}

The orthogonal complement is always a subspace of V .
For a �nite dimensional vector space V and a subspace W of V , we have

V = W ⊕W⊥

(Proved using orthogonal projections.)

13 Contents



3 INNER PRODUCT

Orthogonal Projection onto a Vector: Let (V, 〈, 〉) be a real inner product space, v, w ∈
V and w 6= ~0. Then there exists a unique vector projw(v) such that

i) projw(v) is a scalar multiple of w and
ii) v − projw(v) is orthogonal to v.

This vector is given by the formula

projw(v) =
〈v, w〉
〈w,w〉

w =
〈v, w〉
‖w‖2

w =

〈
v,

w

‖w‖

〉
w

‖w‖

Cauchy-Schwarz Inequality: Let (V, 〈, 〉) be a real inner product space and v, w ∈ V . Then

|〈v, w〉| ≤ ‖v‖‖w‖

with equality happening if and only if v and w are linearly dependent, i.e. one is the scalar
multiple of the other.

Triangle Inequality: Let (V, 〈, 〉) be a real inner product space and v, w ∈ V . Then

‖v + w‖ ≤ ‖v‖+ ‖w‖

with equality happening if and only if one is a non-negative scalar multiple of the other.

Pythagorean Theorem: Say (V, 〈, 〉) is a real inner product space. If v, w ∈ V are orthogonal
vectors, then

‖v + w‖2 = ‖v‖2 + ‖w‖2

Angle: Let (V, 〈, 〉) be a real inner product space and v, w ∈ V . The angle between v and w is
de�ned by the relation

cos θ =
〈v, w〉
‖v‖‖w‖

Complex Hermitian Inner Product: Let V be a vector space over C. An inner product on
V is a function V × V → C taking a pair (v, w) to a complex number 〈v, w〉, that satis�es
the following conditions:

(1) 〈c1v1 + c2v2, w〉 = c1 〈v1, w〉+ c2 〈v2, w〉 for all c1, c2 ∈ R and v1, v2, w ∈ V .
(2) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
(3) 〈v, v〉 is real and non-negative for all v ∈ V , with equality happening if and only if

v = ~0.

The same de�nitions of norm/length and orthogonality hold for a Hermitian inner product
as well.

Orthogonal and Orthonormal Sets: A subset S ⊂ V where V is an inner product space
(either real or complex Hermitian) is called an orthogonal set if for all distinct v, w ∈ S,
we have 〈v, w〉 = 0. If further all the vectors in S are unit vectors, then S is called an
orthonormal set.

Linear Independence: An orthogonal set is linearly independent.

Basis and Expansions: If B = {v1, . . . , vn} is an orthogonal basis for V , then for any
v ∈ V we have

v =
〈v, v1〉
〈v1, v1〉

v1 + · · ·+ 〈v, vn〉
〈vn, vn〉

vn
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Gram-Schmidt Orthogonalization: Say (V, 〈, 〉) is a real or complex Hermitian inner product
space, and B = {v1, v2, . . . , vn} is an ordered basis for V . De�ne wi for i = 1, . . . , n as
follows:

w1 = v1 & wi = vi −
i−1∑
k=1

〈vi, wk〉
〈wk, wk〉

wk for 1 < i ≤ n

Then B′ = {w1, . . . , wn} is an orthogonal basis for V .

Orthogonal Projection onto a Subspace: Say (V, 〈, 〉) is a real or complex Hermitian inner
product space, and W is a subspace of V . An orthogonal projection of a vector v along W
is a vector u = projW (v) such that

i) u ∈W
ii) v − u ⊥W or equivalently v − u ∈W⊥

If W is a �nite-dimensional subspace of V , with an orthogonal basis B = {w1, . . . , wm},
such an orthogonal projection of any vector v along W then exists, is unique, and is given
by

projW (v) =
m∑
i=1

〈v, wi〉
〈wi, wi〉

wi =
〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wm〉
〈wm, wm〉

wm

This projection satis�es, for any w ∈W

‖v − projW (v)‖ ≤ ‖v − w‖

with equality occurring if and only if w = projW (v).

Bessel's Inequality: Let (V, 〈, 〉) be a real or complex Hermitian inner product space. Say
{v1, . . . , vn} is an orthogonal set in V . Then for any v ∈ V ,

‖v‖2 ≥
n∑
k=1

|〈v, vk〉|2

‖vk‖2

Furthermore, the equality holds if and only if

v =

n∑
k=1

|〈v, vk〉|2

‖vk‖2
vk

i.e. v ∈ Span(v1, . . . , vn).
Two remarks:

i) For the n = 1 case, the Bessel's inequality becomes the Cauchy-Schwarz inequality:

‖v‖2 ≥ |〈v, v1〉|
‖v1‖2

⇐⇒ ‖v‖2‖v1‖2 ≥ |〈v, v1〉|

ii) If the set given is further orthonormal, then Bessel's inequality becomes

‖v‖2 ≥
n∑
k=1

|〈v, vk〉|2
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3.2 Two Applications

Method of Least Squares: Say we have a m× n real or complex linear system of equations,
wherem, the number of equations, is typically much larger than n, the number of variables.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

or in another notation,
a11
a21
...

am1

x1 +


a12
a22
...

am2

x2 + · · ·+


a1n
a2n
...

amn

xn =


b1
b2
...
bm


or yet another, more compact notation

~a1x1 + ~a2x2 + · · ·+ ~anxn =
[
~a1 ~a2 . . . ~an

]︸ ︷︷ ︸
A


x1
x2
...
xn

 = A~x = ~b

For m > n we don't expect the system to have a solution unless

~b =


b1
b2
...
bm

 ∈ Span ( ~a1, ~a2, . . . , ~an) = W

In such a case (or even if~b ∈ Span ( ~a1, ~a2, . . . , ~an)) we can look for an approximate solution.
Consider Rn or Cn with its standard (Hermitian) inner product. We know that

‖~b− w‖ ≥ ‖~b− projW (~b)‖

Then the solution to
~a1x1 + ~a2x2 + · · ·+ ~anxn = projW (~b)

which surely exits as projW (~b) ∈W by de�nition, would give us the approximate solution
we are looking for.
So, in short, instead of solving

A~x = ~b

we solve
A~x = projW (b)

where W is the vector space spanned by the columns of the matrix A.

Fourier Series: Let V = C[a, b] be the set of continuous real-valued functions on [a, b], with the
inner product given by

〈f, g〉 =

b∫
a

f(x)g(x)dx
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Our goal is to �nd a �large� subset of V that is orthogonal. The proposition of the Fourier
Series is that we can do this using trigonometric functions. Without loss of generality, take
V = [−π, π] and set

S = {sin(nx)}n=1,2,... ∪ {cos(nx)}n=0,1,2,...

One can easily check that under the given inner product,

- S is an orthogonal set,
- ‖sin(nx)‖ = ‖cos(nx)‖ =

√
π

- ‖1‖ =
√

2π

Then the Fourier series of f ∈ C[−π, π] is de�ned as

proj
Span(S)(f)

where we remark that Span(S) is in�nite dimensional.

Fourier Convergence Theorem: For any choice of f ∈ C[−π, π],

- proj
Span(S)(f) converges at all points x ∈ [−π, π].

- f = proj
Span(S)(f), i.e. Span(S) = C[−π, π]

If we wish to work with complex-valued functions f ∈ [−π, π] → C, the same arguments
work with the standard Hermitian inner product in V = C[−π, π] given by

〈f, g〉 =

π∫
−π

f(z)g(z)dz

and the set
S = {einz{n ∈ Z}

The set S is again orthogonal with ‖einz‖ =
√

2π for all n ∈ Z, and the Fourier Convergence
Theorem has an analogue for this case as well.

3.3 Operators on a Vector Space

Riesz Representation Theorem: Let (V, 〈, 〉) be a �nite-dimensional vector space over R of
C with a real or complex Hermitian inner product, and ϕ be a linear functional on V .
Then there exists a unique u ∈ V such that ∀v ∈ V ,

ϕ(v) = 〈v, u〉

Adjoint of an Operator: Let (V, 〈, 〉) be a real or complex Hermitian, �nite-dimensional inner
product space, and T : V → V is a linear operator. Then there exists a unique linear
operator T ∗ : V → V such that

〈Tv,w〉 = 〈v, T ∗w〉

for all v, w ∈ V called the adjoint of T .

Double Adjoint: Taking adjoints is an involution, meaning (T ∗)∗ = T for all linear op-
erators T .
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Matrix Representation: If the matrix representation of a linear operator T in some
basis is given by the matrix A, then the matrix representation of its adjoint in the
same basis is

- AT if (V, 〈, 〉) is a real inner product space, and
- A∗ := AT if (V, 〈, 〉) is a complex Hermitian inner product space.

Changing Orders: For linear operators S, T over an inner product space V , we have
(ST )∗ = T ∗S∗.

Self-adjoint Operators: A linear operator T : V → V is said to be self-adjoint if T = T ∗.

Matrix Representation: The matrix representation of a self-adjoint operator in a real
inner product space is a symmetric matrix, i.e. A = AT . Similarly, the matrix
representation of a self-adjoint operator in a complex Hermitian inner product space
is given by a Hermitian matrix, i.e. A = A∗ = AT .

Orthogonal and Unitary Operators: Let (V, 〈, 〉) be an inner product case and T a linear
operator on it. Then if T preserves the inner product, meaning

〈Tv, Tw〉 = 〈v, w〉

for all v, w ∈ V , then T is said to be

- orthogonal if V is a real inner product space, or
- unitary if V is a complex Hermitian inner product space.

Equivalent Descriptions: For an operator T in a real or complex Hermitian inner prod-
uct space, the followings are equivalent:

i) T is orthogonal/unitary.
ii) T preserves the lengths of all vectors.
iii) TT ∗ = T ∗T = I
iv) T takes any orthonormal basis of V to another orthonormal basis.

Matrix Representations: An n×n real matrix is called orthogonal if AAT = ATA = In.
Similarly, an n× n complex matrix is called unitary if AA∗ = A∗A = In.

Orthogonal Group: The n× n orthogonal/unitary matrices form a group under matrix
multiplication, called the orthogonal group, denoted O(n) or O(n,R)/O(n,C)

Normal Operators: Let (V, 〈, 〉) is a real or complex Hermitian inner product space, and T be
a linear operator on it. T is said to be a normal operator if

TT ∗ = T ∗T

Self-adjoint, orthogonal/unitary operators are all normal operators as well.

Polynomial of a Normal Operator: For any p(x) ∈ R[x] or p(x) ∈ C[x], if T is a
normal operator, then so is p(T ).

Nilpotency: If a normal operator T is also nilpotent (i.e. T k = 0 for some k ∈ N), then
T = 0.

Diagonalizability: Every normal operator T on a �nite-dimensional real or complex Her-
mitian inner product space is diagonalizable over C.
As for a normal operator T , T ∗ is also normal and hence diagonalizable and T and T ∗

commute by the de�nition of normality, this means that T and T ∗ are simultaneously
diagonalizable.
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Eigenvalues and Eigenvectors: For any normal operator T on a �nite-dimensional in-
ner product space, if v is an eigenvector of T with eigenvalue λ, then v is an eigenvector
of T ∗ with eigenvalue λ.

Eigenspaces: For any normal operator T , the eigenspaces of T are all mutually orthogo-
nal. That is, eigenvectors with di�erent eigenvalues are orthogonal to one another.

Orthogonal Basis of Eigenvectors: For any normal operator T on an inner product
space V , there exists an orthonormal basis B of eigenvectors of T for V .

Complexi�cation: To be able to state the last fact about a normal operator inducing an
orthogonal basis of its eigenvectors on its domain vector space, we need the complexi�cation
concept, because even if the vector space is real, the eigenvalues and eigenvectors of an
operator on it may indeed be complex.
For a real vector space V , its complexi�cation is de�ned as

VC := V ⊗R C

VC is a complex vector space in a natural way, under the following scalar multiplication:

c
(∑

vi ⊗ ai
)

:=
∑

vi ⊗ (cai)

And so the previous theorem can be stated as follows: If T : V → V is a normal operator
on a real and �nite-dimensional inner product space, then T : VC → VC de�ned by

T
(∑

vi ⊗ ai
)

:=
∑

T (vi)⊗ ai

is diagonalizable and has an orthonormal basis of eigenvectors.

3.4 Spectral Theorem & Its Consequences

Orthogonal Projection: Let (V, 〈, 〉) be a real or complex Hermitian inner product space. A
linear operator P : V → V is called an orthogonal projection if

i) P 2 = P , so P is a projection,
ii) P ∗ = P , so P is self-adjoint.

Then it is easy to prove that for all v ∈ V , we have Pv ⊥ v−Pv due to the self-adjointness,
hence the name �orthogonal� projection.

Spectral Theorem: Let (V, 〈, 〉) be a real or complex Hermitian �nite-dimensional inner prod-
uct space, and T : V → V a normal operator on it with distinct eigenvalues λ1, . . . , λk
and corresponding eigenspaces Wλ1 , . . . ,Wλk . Then, there exists orthogonal projections
P1, . . . , Pk with the following properties:

i) Im(Pi) = Wλi for all i,
ii) T = λ1P1 + · · ·+ λkPk,
iii) I = P1 + · · ·+ Pk,
iv) PiPj = 0 whenever i 6= j.

Spectral Characterization of Operators: The Spectral Theorem provides further means of
classi�cation for the operator types we know from before. Let (V, 〈, 〉) be a real or complex
Hermitian �nite-dimensional inner product space, and T : V → V a normal operator on it.

Self-Adjoint Operators: T is self-adjoint if and only if all its eigenvalues are real.
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Diagonalizability/Matrix Representations: This means that symmetric/Hermi-
tian n× n matrix A is similar to a real diagonal matrix D, say via P , so we have
A = PDP−1. Because we also have an orthonormal basis of eigenvectors, we can
construct this P matrix in such a way that its columns are these orthonormal
basis, which yields P ∗P = I, yielding P−1 = P ∗ and making P unitary. Thus we
conclude that for a symmetric/Hermitian matrix A, there exists a unitary matrix
P and a real diagonal matrix D such that

A = PDP ∗ = PDP−1

Unitary & Orthogonal Operators: T is unitary if and only if all its eigenvalues have
modulus 1, i.e. they lie on the unit circle in the complex plane.

Diagonalizability/Matrix Representations: With a similar reasoning as above,
if A is a unitary matrix, then there exist a unitary matrix P and a diagonal matrix
D of unit modulus entries such that

A = PDP ∗ = PDP−1

Real Orthogonal Matrices: There exists a basis B of Rn such that

[T ]BB =


A1

A2

. . .

Ak


where each Aj is one of the following 1× 1 or 2× 2 matrices:[

1
]

OR
[
−1
]

OR

[
cos θj − sin θj
sin θj cos θj

]
for some θj

Rotations of R3: Every rotation of R3 has an axis (along which there is no
change occurs, so the eigenvalue is 1 for the unit vector (eigenvector) of this
direction).

4 Quadratic Forms

We will be taking F to be a �eld of characteristic di�erent than 2.

Quadratic Form: Let n ≥ 1 is an integer. A quadratic form q in n-variables is a degree 2
homogenous polynomial in n variables, say x1, . . . , xn:

q(x1, . . . , xn) =

n∑
i=1

aijxixj

where aij ∈ F . We can represent each quadratic form with a vector-matrix multiplication.

De�ne a variable vector ~xn×1 =
[
x1 . . . xn

]T
and write

q(~x) = ~xTB~x

where B ∈ Mn×n(F ) with BT = B. From the polynomial expression, we can extract the
entries of the matrix B as

bij =

{
aij if i = j
aij
2 if i 6= j

so there exists a one-to-one correspondence between quadratic forms and symmetric ma-
trices in F .
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Diagonal Quadratic Form: A diagonal quadratic form is one that constitutes only of
x2i terms. Equivalently, a quadratic form is diagonal if its corresponding matrix B is
diagonal.

Equivalence of Quadratic Forms: Say q1(~x) = ~xTA1~x and q2(~y) = ~yTA2~y are two quadratic
forms. We say that they are equivalent if there exists an invertible matrix P ∈ Mn×n(F )
such that

A2 = P TA1P

Notice that in this case A1 and A2 are not similar. However, the two equivalent forms
being equivalent means that one acts like the other under a change of basis (~x = P~y).
This relation is indeed an equivalence relation.

Diagonalization of Quadratic Forms: Any quadratic form q(~x) is equivalent to a diagonal
quadratic form.

Principle Axis Theorem: Take the inner product space (Rn, 〈, 〉) with its standard inner
product. Then, for any quadratic form q(~x) = ~xTA~x, there exists an orthogonal
matrix P such that P TAP is diagonal. This follows very easily from the Spectral
Theorem.

4.1 Classi�cation of Real Quadratic Forms up to Equivalence

The goal is to �nd which features of a quadratic form are preserved under the equivalence
relation. In other words, we want to understand the equivalence classes of the quadratic form
equivalence relation.

Rank: Say q1(~x) = ~xTA1~x and q2(~y) = ~yTA2~y are two equivalent quadratic forms. Then

rank(A1) = rank(A2)

Sylvester's Law of Inertia: Suppose A ∈ Mn×n(R) is a symmetric matrix, and P1 and P2

are two invertible matrices such that P T1 AP1 = D1 and P T2 AP2 = D2 are both diagonal
matrices. Then the number of positive/negative entries of D1 and that of D2 are the same.

Signature: The signature of a real quadratic form q de�ned by a symmetric matrix A
is de�ned as the number of positive eigenvalues minus that of negative eigenvalues.
Sylvester's theorem implies that two equivalent real quadratic forms have the same
signature.
Notice that the rank of A is exactly the sum of these two quantities, so given the rank
and signature of A, we can solve for these two quantities with ease.

Classi�cation of Real Quadratic Forms up to Equivalence: Two real quadratic forms are
equivalent if and only if they have the same rank and the same signature.
So, say we �x a dimension n and consider the quadratic forms on Rn. Each equivalence
class necessarily has di�erent number of positive, negative, and null eigenvalues. Say we
denote these by n+, n− and n0 respectively. We conclude, via also the rank-nullity theo-
rem, that the number of equivalence classes of quadratic forms is the number of positive
integer solutions to the equation

n+ + n− + n0 = n
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5 SINGULAR VALUE DECOMPOSITION & POLAR DECOMPOSITION

5 Singular Value Decomposition & Polar Decomposition

5.1 Positive and Non-negative Operators

Positive and Non-negative Operators: Let (V, 〈, 〉) be a real or complex Hermitian inner
product space with �nite dimension. A self-adjoint operator T : V → V is called

- positive if 〈Tv, v〉 > 0 for all non-zero vectors v ∈ V .
- non-negative if 〈Tv, v〉 ≥ 0 for all v ∈ V .

Eigenvalues: Being self-adjoint, such a T is diagonalizable with real eigenvalues. T is

- positive if and only if all of its eigenvalues are positive.
- non-negative if and only if all of its eigenvalues are non-negative.

Matrices: A real symmetric matrix A is

- positive-de�nite if vTAv > 0 for all non-zero column vectors.
- non-negative-de�nite if vTAv ≥ 0 for all column vectors.

The eigenvalue characterization is the same for matrices.

Automatically Positive/Non-negative Matrices: Let A be any n×m matrix. Then A∗A
and AA∗ are always non-negative-de�nite. If further A has rank m (necessitating n ≥ m),
then A∗A is positive-de�nite.

Positive Inverses: The inverse of a positive-de�nite matrix is again positive de�nite.

Positive Roots: Every positive-de�nite matrix P has a positive-de�nite n-th root for any pos-
itive integer n ∈ N+, meaning there exists some Q such that Qn = P .

Product of Positive Matrices: The product of two positive-de�nite matrices need not be
positive itself (as we may lose self-adjointness), but it has positive eigenvalues.

5.2 Singular Value Decomposition & Polar Decomposition

Singular Value Decomposition: Let A be a real/complex n × m matrix. Then there exist
an n× n orthogonal/unitary matrix U , an m×m orthogonal/unitary matrix V and a real
diagonal n×m matrix Σ with non-negative entries such that

A = UΣV ∗

The entries of Σ are called the singular values of A.

Computation: Whether A has full column rank or not, we start by computing the eigen-
values and eigenvectors of A∗A, which we know is diagonalizable as it is self-adjoint,
with positive/non-negative eigenvalues. Say λi are the eigenvalues of A∗A corre-
sponding to eigenvectors vi. As A∗A is self-adjoint, we know the vectors vi form an
orthogonal, further orthonormal (after normalization) basis for V . Then set

σi =
√
λi ui =

1

σi
Avi

If necessary, complete the sets {vi} and {ui} to orthonormal bases of appropriate
dimensions. And then set

Un×n =
[
u1 . . . un

]
Σn×m = diag(σ1, . . . , σr) Vm×m =

[
v1 . . . vm

]
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Polar Decomposition: This decomposition is inspired by the polar representation of complex
numbers, i.e. with one number that is non-negative, the other with unit norm.

Existence: Let A be any n×n complex matrix. Then there exist a unitary matrix U and
a non-negative matrix P such that

A = UP

If A is real, then both U and P can be taken to be real as well (in which case U is an
orthogonal matrix.)

Uniqueness: If further this A is invertible, then the polar decomposition is unique. Mean-
ing there exist unique unitary matrix U and positive-de�nite matrix P such that
A = UP .

Computation: These matrices P and U are computed from the singular value decompo-
sition of A = V ΣW ∗ as

P = WΣW ∗ = WΣW−1 & U = VW ∗ = VW−1

so we have
UP = V W ∗W︸ ︷︷ ︸

I

ΣW ∗ = V ΣW ∗ = A

6 Canonical Forms

How can we classify linear operators up to a change of basis?

An Equivalence of Linear Operators: Let V be a �nite-dimensional vector space over a �eld
F . We declare two linear operators T1, T2 : V → V to be equivalent if they become the
same operator after a change of basis. In other words, they are equivalent if there exist
bases B1 and B2 of V such that

[T1]
B1
B1 = [T2]

B2
B2

For matrices, as they represent linear operators, this amounts to declaring them equivalent
if and only if they are similar.

Some Part of Our Answer: Two diagonalizable operators are equivalent (similar) if and only
if they have the same characteristic polynomial (and hence eigenvalues).

Dealing with Non-diagonalizability: As we have seen before, there are two problems that
cause non-diagonalizability:

1) The characteristic polynomial may not split into linear factors. But then, a fact from
�eld theory states that every �eld can be enlarged in such a way that all polynomials
on it splits into linear factors (algebraic closure), e.g. treating an operator on Rn as
if it is in Cn. So this problem is easy to deal with.

2) The characteristic polynomial may split into linear factors but some eigenspaces may
be dimension-de�cit. This is the interesting case, and we will assume to be in this
situation from now on.
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6.1 Jordan-Chevalley Decomposition

Semisimple ≡ Diagonalizable. Let V be a �nite-dimensional vector space vector space over
F , T : V → V a linear operator that is not diagonalizable but ∆T (x) splits into linear factors.

Direct Sum of Eigenspace-ish Subspaces: Say the characteristic polynomial of T is ex-
pressed as

∆T (x) = (x− λ1)µ1(x− λ2)µ2 . . . (x− λk)µk

where λ1, λ2, . . . , λk ∈ F are the unique eigenvalues of T . De�ne for each i

Ti := (T − λiI)µi and Ci := ker ((T − λiI)µi) = ker(Ti)

Then we have
V = C1 ⊕ C2 ⊕ · · · ⊕ Ck

Invariance: Each of these Ci subspaces are T -invariant.

Jordan-Chevalley Decomposition: Say V is a �nite-dimensional vector space over a �eld
F , T : V → V a linear operator whose characteristic polynomial ∆T (x) splits into linear
factors. Then there exist unique semisimple (diagonalizable) operator S and nilpotent
operator N such that

T = S +N

and any two of T , S and N commute.

De�ning S and N : De�ne S using the direct sum decomposition V = C1⊕C2⊕· · ·⊕Ck
as

S(vi) = λivi on each Ci and extend it to V linearly ⇒ S|Ci = λiI

N = T − S

Invariance of Ci's: The Ci subspaces from before are also S and N -invariant.

Implications for Matrix Representations: Each of these Ci subspaces are T -invariant, so
we can select a basis Bi for each Ci and de�ne B = B1 ∪ · · · ∪ Bk as a basis for V . Thus we
�nd

[T ]BB =


A1 0

A2

. . .

0 Ak


so [T ]BB is in block diagonal form an Ai = [T |Ci ]

Bi
Bi . On the other hand,

[S]BB =


λ1I 0

λ2I
. . .

0 λkI


and thus

[N ]BB = [T ]BB − [S]BB

But we see that this representation is not necessarily useful.

24 Contents



6 CANONICAL FORMS

A Careful Choice of Basis: There exists a basis for each Ci such that T |Ci ]
Bi
Bi is upper trian-

gular with λi on the diagonal:

[T |Ci ]
Bi
Bi =

λi ? ?
. . . ?

0 λi


which implies

[S|Ci ]
Bi
Bi =

λi 0
. . .

0 λi

 [N |Ci ]
Bi
Bi =

0 ? ?
. . . ?

0 0



6.2 Jordan Form

An even more careful choice of basis, which in a sense generalizes the concept of diagonal-
izability.

Jordan Block: Say F is any �eld. A matrix Jλ ∈ Mm×m(F ) for some λ ∈ F is said to be a
Jordan block if it is of the following form:

Jλ =


λ 1 0

λ
. . .
. . . 1

0 λ


meaning (Jλ)i,i = λ, (Jλ)i,i+1 = 1 and all other elements are 0.

Jordan Form: A matrix J ∈∈Mm×m(F ) is said to be in Jordan form if it is in block-diagonal
form with each block being a Jordan block:

J =


Jλ1 0

Jλ2
. . .

0 Jλk


Existence of Jordan Form: Say V is a �nite-dimensional vector space over a �eld F . Let

T : V → V be a linear operator such that ∆T (x) splits into linear factors in F [x]. Then
there exists a basis B for V such that [T ]BB is in Jordan form.

Multiple Jordan Blocks: While writing the Jordan form of an operator/matrix, one
might need to use more than one Jordan block for each Ci.

Eigenvalues & Eigenvectors of a Nilpotent Operator: The only (unique) eigenvalue
of a nilpotent operator is 0. Also, say we have written out the Jordan form of a nilpo-
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tent operator as

[N ]BB =



0 1 0

0
. . .
. . . 1

0 0
0 1 0

0
. . .
. . . 1

0 0
. . .

0 1 0

0
. . .
. . . 1

0 0


Then the basis elements that coincide with the zero columns of this matrix represen-
tation are the eigenvectors of this nilpotent operator.

Implications for Matrices: Because each matrix A ∈ Mn×n(F ) represents a linear op-
erator, the existence of Jordan form implies that every matrix is similar to a matrix
Jordan form through a change of basis matrix P . This matrix J is called the matrix
canonical form of A.

Uniqueness of Jordan Form: This J matrix is unique up to a permutation of the Jordan
blocks, while the change of basis matrix P is certainly not unique.

Computing the Jordan Form: While computing the Jordan form of a matrix, we often (al-
most always) make use of the following facts:

Combinatorial Possibilities: For a single eigenvalue λi with multiplicity µi ∈ N+ and
its corresponding subspace Ci, the number of possible Jordan forms of this subspace
only is equal to the number of partitions of the positive natural number µi.

Minimal Polynomial: Because A and its Jordan form J are similar, their minimal poly-
nomial is the same. We can use this to our bene�t as follows: Say the minimal poly-
nomial of A, namely δA(x) contains the factor (x− λi) with multiplicity 1 ≤ ηi ≤ µi.
Then, the maximum size of the Jordan block corresponding to the subspace Ci can
be this ηi.

Number of Jordan Blocks: Even after �nding the minimum polynomial and hence the
maximum size of a Jordan block, we might have some partitions to choose from.
These partitions will likely be distinguished by their number of components. By
noticing that the number of components in a partition is equal to the dimension of
the eigenspace Wλi , we can �nd the correct partition, and hence the Jordan block for
the Ci in question.

Consistent Solutions for Basis Vectors: After �nding the Jordan form J of a matrix
A, we also need to �nd the change of basis matrix P that relates the two, meaning
we need this invertible P to satisfy

A = PJP−1 so AP = PJ

While solving this equation, we set

P =
[
v1 v2 . . . vn

]
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and thus we solve

A
[
v1 v2 . . . vn

]
=
[
Av1 Av2 . . . Avn

]
=
[
v1 v2 . . . vn

]
J

For Jordan blocks of size 1, the problem reduces to �nding eigenvalues. However for
the larger Jordan blocks, one needs to solve equations of the form

Avi+1 = vi + λvi+1 ⇒ (A− λI)vi+1 = vi

where vi is a non-zero vector that either is an eigenvector itself (2× 2 Jordan block)
or comes from a chain of vector selections that itself originates from an eigenvector
(even larger Jordan block). Either way, the vi vector must be selected in such a way
that the equation (A−λI)vi+1 = vi is consistent. Thus, while solving these equations,
the best practice is to

1. leave the initial eigenvectors in the most general form,
2. propagate to the �deepest-level� equation that requires consistency in its equation

while keeping tabs on the consistency requirements,
3. select vectors that solve these deepest-level equations, and
4. propagate these selections back up to the eigenvector-level until all basis vectors

are selected.

One must always remember that all selected basis vectors must be linearly indepen-
dent to have an invertible P .

So we found that any matrix is similar to a unique Jordan form, which enables us to explicitly
write out all the Jordan forms in a given �nite-dimensional vector space.

6.3 Two Applications

Computing the Jordan-Chevalley decomposition, or even better the Jordan form of a matrix
eases certain computations greatly. Say in a k-dimensional vector space V we have a linear
operator T : V → V , with a characteristic polynomial

∆T (x) = (x− λ1)µ1 . . . (x− λk)µk

where λi's are distinct eigenvalues. Then we can decompose T = S+N where S is diagonalizable
and N is nilpotent, with any two of T , S and N commuting. In the basis B found for the Jordan
form, [S]BB is diagonal and [N ]BB is strictly upper triangular.

Matrix Powers: Because any two of T , S and N commute, for m ∈ N+ we can write

Tm = (S +N)m =

n∑
k=0

(
m

k

)
Sm−kNk

For matrix representations, because the Jordan blocks in a Jordan form do not interact in
multiplication, we can only consider a single Jordan block. So, say Jλ is a single Jordan
block with eigenvalue λ:

λ 1 0

λ
. . .
. . . 1

0 λ


︸ ︷︷ ︸

Jλ

=


λ 0 0

λ
. . .
. . . 0

0 λ


︸ ︷︷ ︸

[S]BB

+


0 1 0

0
. . .
. . . 1

0 0


︸ ︷︷ ︸

[N ]BB
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The exponentiation of [S]BB is easy as it is a diagonal matrix, and the exponentiation of
[N ]BB shifts the ones on the diagonal �one up� until all the ones are �outside the matrix
bounds�:

(
[N ]BB

)m
=





0 0 · · · 1 · · · 0

0 0
. . .

...
. . .

. . . 1 (m+ 1)-th diagonal

. . . 0
...

0 0

0 0


if m ≤ k − 1

0k×k otherwise

Therefore, using the binomial expansion formula above, we obtain the following result:

(Jλ)m =
(
[S]BB + [N ]BB

)
=

n∑
k=0

(
m

k

)(
[S]BB

)m−k (
[N ]BB

)k

=



λm
(
m
1

)
λm−1

(
m
2

)
λm−2 · · ·

...(
m
2

)
λm−2(

m
1

)
λm−1

0 λm


where the elements in the upper triangle are repeated along the diagonals and the strictly
lower triangle is all zeroes. And so, we conclude

[T ]BB = P


Jλ1

Jλ2
. . .

Jλk

P−1 ⇒ (
[T ]BB

)m
= P


(Jλ1)m

(Jλ2)m

. . .

(Jλk)m

P−1

Matrix Exponentials: Because we can now compute matrix powers, we can technically com-
pute any function of a matrix with a Taylor series expansion (given that we have the related
convergence issues resolved). We'll deal with the exponential function here:

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ . . .

For a square matrix A with a similar Jordan form A = PJP−1, we then expect to have

exp(A) = I +A+
A2

2!
+
A3

3!
+ . . .

= PIP−1 + PJP−1 +
(PJP−1)2

2!
+

(PJP−1)3

3!
+ . . .

= P

(
I + J +

J2

2!
+
J3

3!
+ . . .

)
P−1 = P exp(J)P−1

So, we just need the exponential of the Jordan form of A to compute its exponential. But
again, because the Jordan blocks do not interact with one another, the exponential of a
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single Jordan block is enough to derive and the rest follows easily. So, let Jλ be a k × k
Jordan block with eigenvalue λ. Then, we can �nd that

exp(Jλ) = eλ



1 1 1/2! 1/3! . . . 1/(k−1)!
...

1/3!
1/2!
1

0 1


where again the elements in the upper triangle are repeated along the diagonals and the
strictly lower triangle is all zeroes. And so, the exponential of the total Jordan form J
becomes

J =


Jλ1

Jλ2
. . .

Jλk

 ⇒ exp(J) =


exp(Jλ1)

exp(Jλ2)
. . .

exp(Jλk)


and so we are done:

exp(A) = P exp(J)P−1
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