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0. Preliminaries

0.a Notation and Basic De�nitions

Observations: x ∈ X (x ∈ X if scalar)

True parameter: θ ∈ Θ (θ ∈ Θ if scalar)

Estimate: θ̂ (θ̂ if scalar)

Likelihood function: p(x; θ) is the probability distribution of the observations, parametrized by θ.

It is taken as a function of the parameters θ and NOT of the observations x.

Log Likelihood Function (LLF): ln p(x; θ), similarlyNegative Log Likelihood Function (NLLF)
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0.b Useful Linear Algebra

Matrix Inversion Lemma:

(A+BD−1C)−1 = A−1 −A−1B(D+CA−1B)−1CA−1

0.c Useful Gaussians

Suppose x and y are jointly Gaussian random variables with joint pdf[
x

y

]
∼ N

([
µx

µy

]
,

[
Cx Cxy

Cyx Cy

])
where

Cx = E
{
(x− µx)(x− µx)

T
}

Cy = E
{
(y − µy)(y − µy)

T
}

Cxy = E
{
(x− µx)(y − µy)

T
}
= E

{
(y − µy)(x− µx)

T
}T

= CT
yx

Marginalization: The marginal pdf's of x and y are

x ∼ N (µx, Cx) and y ∼ N (µy, Cy)

Conditioning: The conditional pdf of x |y is

x |y ∼ N
(
µx |y, Cx |y

)
where

µx |y = µx +CxyC
−1
y (y − µy) and Cx |y = Cx −CxyC

−1
y Cyx
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1. Classical Estimation: Deterministic θ

1.a Minimum Variance Unbiased Estimate (MVUE)

Bias: The estimate θ̂ is a function of random variables x, and so is random itself. The bias is the

expected deviation from the true parameter θ.

b(θ) := E
{
θ̂ − θ

}
= E

{
θ̂
}
− θ

MSE and Bias: The bias b(θ) of an estimator θ̂ and its mean squared error MSE(θ̂, θ) are related as

MSE(θ̂, θ) = b(θ)2 + var(θ̂)

This reliance on the true knowledge of θ is what motivates the unbiasedness constraint.

MSE: Notice how the unbiasedness constraint b(θ) = E
{
θ̂
}
− θ = 0 results in

MSE(θ̂, θ) = var(θ̂)

Existence of MVUE: MVUE may not exist if

1. if an unbiased estimator doesn't exist (losing on the U side), or

2. none of the existing unbiased estimators has a uniformly minimum variance (losing on the

MV side).

Finding MVUE: There are three methods to �nd MVUE:

1. Determine the Cramér-Rao Lower Bound (CRLB) and see if an estimator satis�es it.

2. Use the Rao-Blackwell-Lechman-Sche�e Theorem (skipped).

3. Restrict in form, for example restrict to linear estimators only. Notice that this will give

true MVUE is the problem is linear by nature.

1.b Cramér-Rao Lower Bound (CRLB)

Meaning: The Cramér-Rao lower bound sets the best performance criterion for an unbiased estimator.

σ2
θ̂
(θ) ≥ CRLB(θ)

Inserting the de�nitions from above, I see that it sets a lower bound on the MSE:

MSE(θ̂) ≥ CRLB(θ)

Regularity Condition: CRLB is de�ned under the following condition:

Ex

{
∂ ln p(x; θ)

∂θ

}
=

∂

∂θ
Ex{ln p(x; θ)} = 0 ∀θ ∈ Θ

This can be interpreted as requiring the expected log likelihood to be independent of θ.

Alternative: The support of p(x; θ) as the pdf of x must not depend on θ, and the derivative
∂

∂θ
ln p(x; θ) must exist and be �nite for all x ∈ X and θ ∈ Θ.
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Non-example: The following uniform pdf parametrized by θ ∈ R+ violates this regularity

condition:

p(x; θ) =
1

θ
for 0 ≤ x ≤ θ

Formula: Under the above regularity condition, CRLB is given by the following expression:

CRLB(θ) =
−1

Ex

{
∂2

∂θ2
ln p(x; θ)

} ∣∣∣
θ=true value

Notice how this is still dependent on the true value θ. Depending on the problem CRLB may

vary as the true parameter value changes, which e�ectively means some parameter values are

better estimated compared to the others.

Alternative: The alternative form of CRLB, which requires proof, is given as follows:

CRLB(θ) =
1

Ex

{[
∂
∂θ ln p(x; θ)

]2}
Theorem: There exists an unbiased estimator that achieves the CRLB if and only if

∂

∂θ
ln p(x; θ) = I(θ) (g(x)− θ)

for some functions I(θ) and g(x). In this case, the estimate θ̂ and the CRLB become

θ̂ = g(x) and CRLB(θ) =
1

I(θ)

because

I(θ) = −Ex

{
∂2

∂θ2
ln p(x; θ)

}
Fisher Information: The function I(θ) is called as the Fisher information.

I(θ) = −Ex

{
∂2

∂θ2
ln p(x; θ)

}
= Ex

{[
∂

∂θ
ln p(x; θ)

]2}

It requires the following desired properties of information, just like Shannon information does:

1. I(θ) ≥ 0 (see the alternative form), and

2. I(θ) is additive over independent observations (follows easily from the pdf of independent

variables, properties of log and linearity of di�erentiation).

E�ciency: An estimator is said to be e�cient if

� it is unbiased and

� it attains CRLB.

Asymptotic E�ciency: An estimator is said to be asymptotically e�cient if it tends to e�-

ciency as the number of observations tends to in�nity.

Transformation of Parameters: Say that I have an estimate θ̂, and another variable of interest

given by α = f(θ). Then the CRLB of the parameter α can be expressed as

CRLB(α) =

(
∂

∂θ
f(θ)

)2

CRLB(θ)
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The factor
(

∂
∂θ f(θ)

)2
captures the sensitivity of α to θ.

A�ne Transformation: Suppose g(x) = θ is an e�cient, and α = aθ + b is a parameter

a�nely related to θ. Then the estimator of α given by α̂ = ag(x)+ b = aθ̂+ b is an e�cient

estimator.

Vector Estimation: If I have N parameters of interest expressed as a vector

θ =
[
θ1 . . . θN

]
then I have

Fisher Information Matrix (FIM) given by

[I(θ)]mn = −Ex

{
∂2

∂θn∂θm
ln p(x; θ)

}
Notice that it is the expected Hessian matrix of the NLLF.

CRLB matrix which is given by

CRLB(θ) = I−1(θ)

The diagonal elements of the CRLB matrix are the lower bounds on the MSE values of

individual estimate θn's. Further more, I have

Cθ − I(θ) ≥ 0 Positive Semi-De�niteness

Tranformation of Parameters: If α = g(θ) is another estimated vector, its CRLB matrix is

obtained by

CLRB(α) =

[
∂g(θ)

∂θ

]
CRLB(θ)

[
∂g(θ)

∂θ

]T
=

[
∂g(θ)

∂θ

]
I−1(θ)

[
∂g(θ)

∂θ

]T
General Gaussian Case: Let's say that the observations x are jointly Gaussian, parametrized by θ

in the most general setting:

x ∼ N (µ(θ), C(θ))

Then the Fisher information matrix's entries are computed as follows:

[I(θ)]ij =

[
∂µ(θ)

∂θi

]T
C−1(θ)

[
∂µ(θ)

∂θj

]
+

1

2
Tr

[
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

]

1.c Linear Models

Linear Models: A linear model is de�ned as

x = Hθ+ b+w

where the observations x are taken to be an a�ne function of θ, corrupted by the zero-mean

Gaussian noise vector w ∼ N (0, C). I assume the matrix H is full rank.

Importance: Linear models are important for the following reasons:

1. Some applications admit this model

2. Nonlinear systems can be handled through linearization

3. Optimal estimator is easy to �nd
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Estimator: The MVUE and its covariance matrix are given as follows:

θ̂MV U =
(
HTC−1H

)−1
HTC−1(x− b)

C
θ̂
=
(
HTC−1H

)−1 ⇐⇒ I(θ) = HTC−1H (Achieves CRLB)

1.d Best Linear Unbiased Estimate (BLUE)

Best Linear Unbiased Estimator: When the MVUE does not exist or di�cult/impossible to �nd,

I resort to restricting the estimator to be a linear one, and �nd the best (i.e. minimum variance)

estimator among the linear ones. So, the constraint optimization problem of �nding BLUE is

formulated as follows:

minimize Ex

{
(Ax− θ)2

}
(MSE minimization)

subject to Ex{Ax} = θ̂ = θ (Linearity & Unbiasedness Constraint)

Thanks to the unbiasedness constraint, I know that the MSE is equal to the variance of the

estimate, and so, it can be reformulated as

minimize Ex

{(
Ax− θ̂

)2}
= var(θ̂) (Variance minimization)

subject to Ex{Ax} = θ̂ = θ (Linearity & Unbiasedness Constraint)

Linear Observations: If the observations x are generated linearly as

x = Hθ+w

where H and the mean and covariance of w known, the BLUE and its covariance are given

by

θ̂BLU =
(
HTC−1H

)−1
HTC−1x

C
θ̂
=
(
HTC−1H

)−1

If the noise w is Gaussian, then this is MVUE.

1.e Maximum Likelihood Estimation

Motivation: MVUE may not exist, and BLUE may not be applicable (over-restriction in mod-

elling/insu�ciently large MSE)

Advantages: It is a turn-the-crank method (algorithmic) and optimal for large data size.

Disadvantages: It is not optimal for small data sizes and can be computationally complex.

Rationale: Find the parameters that make the observed data the most likely data to have been

observed.

De�nition: Estimation problem becomes an optimization problem. Notice that passing the function

to be optimized through a monotonically increasing function

θ̂ML = argmax
θ∈Θ

p(x; θ) (Maximize LF)

= argmax
θ∈Θ

ln p(x; θ) (Maximize LLF)

6 Contents



Advanced Statistical Signal Processing - Cheat Sheet O§ul Can Yurdakul

= argmin
θ∈Θ

− ln p(x; θ) (Minimize NLLF)

Properties: The MLE is asymptotically

1. unbiased,

2. e�cient (i.e. achieves CRLB),

3. normally distributed.

E�ciency: If a truly e�cient estimator �nds it, MLE �nds it.

Asymptotic Gaussianity: Under the regularity conditions of

1. Existence of the �rst and second derivatives of the LLF

2. The usual

E
{

∂

∂θ
ln p(x; θ)

}
= 0

the MLE is asymptotically Gaussian, i.e.

θ̂ML
a∼ N

(
θ, I(θ)−1

)
The N required to achieve this asymptotic behaviour is determined through Monte Carlo

simulations.

Transformed Parameters: Let's assume I have a second quantity α = f(θ) to be estimated. How

to I �nd the MLE for α? The solution depends on the injectivity of the map f :

� If f is injective, then I can de�ne f−1 and thus

α̂ML = argmax
α∈A

p(x; f−1(α))

� If f is not injective, then I need the modi�ed likelihood function:

p(x;α) = max
{θ|α=f(θ)}

p(x; θ)

And so, the MLE of α maximizes this modi�ed likelihood function.

α̂ML = argmax
α∈A

p(x;α)

Invariance Property: The MLE of α = f(θ) is given by α̂ML = f(θ̂ML). The function maxi-

mized by the MLE changes depending on the injectivity of f .

E�ciency: Even though I have θ e�ciently estimated, its image under a nonlinear function

f(θ) cannot be e�ciently estimated.

Numerical Determination of MLE: I hope to have a closed form solution to the MLE determi-

nation problem, but In many cases, the derivative of the LLF may not allow for a closed form

solution, which is why I need numerical methods.

Brute Force Method: Only if you are rich. It is sure to �nd the global maximum over a large

and �ne enough grid, but it demands a ton of computation power.

Iterative Methods: The way of the smart. The general methodology is to

1. Pick some initial estimate θ̂0, and

7 Contents



Advanced Statistical Signal Processing - Cheat Sheet O§ul Can Yurdakul

2. Iteratively improve it using

θ̂k+1 = f(θ̂k,x) such that lim
k→∞

p(x; θ̂k) = max
θ

p(x; θ)

The issues with this approach are the following

� It may not converge, or

� Even if it converges, it might converge to a local maximum instead of the global.

Newton-Raphson: This is a general method to �nd the zero of a di�erentiable function,

let's say f(x). The idea is to approximate f with its �rst-order Taylor series expansion,

and equate that approximation to zero, which always has a solution, and use that as

the next point of Taylor approximation:

f(x) ≈ f(x0) + f ′(x0)(x− x0) = 0 ⇒ x = x0 −
f(x0)

f ′(x0)
(Scalar case)

The function I am trying to equate to zero is the derivative of LLF, so that I can

maximize it. Therefore the Newton-Raphson MLE iteration rule becomes the following

(For the vector case):

θ̂k+1 = θ̂k −
[
∂2

∂θ2
ln p(x; θ̂k)

]−1
∂

∂θ
ln p(x; θ̂k) (Repeat until convergence)

Vector MLE: Vector parameter case has the analogue properties of the scalar case.

Asymptotic Gaussianity: If the LF satis�es similar regularity conditions, then MLE is asymp-

totically distributed with a Gaussian distribution:

θ̂ML
a∼ N

(
θ, I(θ)−1

)
where I(θ) is the Fisher Information Matrix.

Invariance: Invariance property also holds for the vector case: If α = f(θ), then α̂ML =

f(θ̂ML).

Gaussian MLE: If I know that the data vector x is Gaussian, the LF becomes

p(x; θ) = N (x;µ(θ),C(θ))

This information, however, is not guaranteed to give me a closed form solution to the LF maxi-

mization problem. If I further know that the data is linearly generated, i.e.

x = Hθ+w, w ∼ N (0, C) or alternatively w ∼ N (Hθ, C)

then the MLE has the familiar closed form solution

θ̂ML =
(
HTC−1H

)−1
HC−1x

Then, I notice that the MLE is MVUE, and I can say that

θ̂ML ∼ N
(
θ,
(
HTC−1H

)−1
)

(Exact distribution)
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2. Bayesian Philosophy: Random θ

Bayesian Approach: Assumes θ is random with pdf p(θ).

Bayesian MSE: The cost function in the Bayesian estimation framework is

BMSE(θ̂) = Ex,θ

{
(θ̂(x)− θ)2

}
=

∫∫
(θ̂(x)− θ)2p(x, θ)dxdθ

Bayesian Estimator and Minimum BMSE: The general estimator in the Bayesian framework

that minimizes the above BMSE is given as

θ̂BMMSE = E {θ |x}

This estimator always exists, but not necessarily in closed form. Its minimum BMSE value is

the following:

BMSE(θ̂BMMSE) = Ex{var {θ |x}}

Mean and Variance:

Ex

{
θ̂BMMSE

}
= Ex{E {θ |x}} = E {θ}

varx

{
θ̂BMMSE

}
= varx{E {θ |x}} Use var {X} = E {var {X |Y }}+ var {E {X |Y }}

= var {θ} − Ex{var {θ |x}}

= var {θ} − BMSE(θ̂BMMSE)

Bayesian Linear Model: Consider the linear data generation model

x = Hθ+w

where w ∼ N (0, Cw) and θ ∼ N (µθ, Cθ). Then the observations w and θ are jointly Gaussian

because [
θ

x

]
=

[
I 0

H I

] [
θ

0

]
+

[
0

w

]
with [

θ

0

]
∼ N

([
µθ

0

]
,

[
Cθ 0

0 0

])
and

[
0

w

]
∼ N

([
0

0

]
,

[
0 0

0 Cθ

])
Therefore I can write [

θ

x

]
∼ N

([
µθ

Hµθ

]
,

[
Cθ CθH

T

HCθ HCθH
T +Cw

])
Using the conditioning rule for jointly Gaussian random vectors, I can obtain the conditional

density as

θ |x ∼ N
(
µθ |x, Cθ |x

)
µθ |x = µθ +CθH

T
(
HCθH

T +Cw

)−1
(x−Hµθ)

Cθ |x = Cθ −CθH
T
(
HCθH

T +Cw

)−1
HCθ

=
(
C−1

θ +HTC−1
w H

)−1
(Matrix Inversion Lemma)
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2.a General Bayesian Estimators

Scalar Cost Functions: The above mean squared cost function is only one possible cost function to

optimize. In general, if C(θ− θ̂) is a cost function, the Bayesian estimation problem is minimizing

the expectation of this cost function:

Ex,θ

{
C(θ − θ̂(x))

}
=

∫∫
C(θ − θ̂(x))p(x, θ)dθdx

Di�erent cost functions yield di�erent estimates, and a few possible ones are as follows for the

scalar θ:

Quadratic:

C(θ − θ̂(x)) = (θ − θ̂(x))2

The optimal estimator is then the posterior mean:

θ̂(x) = E {θ |x} =

∫
θp(θ |x)dθ (MMSE Estimation)

Absolute:

C(θ − θ̂(x)) = |θ − θ̂(x)|

The optimal estimator is then the posterior median θmed, given by∫ θmed

−∞
p(θ |x)dθ =

∫ ∞

θmed

p(θ |x)dθ

Hit-or-Miss:

C(θ − θ̂(x)) =

{
0, |θ − θ̂(x)| < δ

1, |θ − θ̂(x)| ≥ δ
(Always thought as δ → 0)

The optimal estimator is then the posterior mode θmode, given by

θmode = argmax
θ∈Θ

p(θ |x) (MAP Estimation)

Vector Cost Functions: The cost functions for the vector case are similar, though a bit harder to

handle.

Vector MMSE (Quadratic): If the quadratic cost function is used for each θi in the parameter

vector θ =
[
θ1 · · · θp

]T
, then the vector MMSE estimator is immediately the vector

extension of the scalar case:

θ̂MMSE = E {θ |x}

The BMSE for each parameter θi is similarly expressed as

BMSE(θ̂i) =

∫ [
Cθ |x

]
ii
p(x)dx where Cθ |x = E

{
[θ− E {θ |x}] [θ− E {θ |x}]T

}
Properties:

1. MMSE estimation commutes over a�ne mappings.

α = Aθ+ b then α̂MMSE = Aθ̂MMSE + b

2. Independent Gaussian datasets contribute additively to the estimate. If θ, x1 and x2
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are jointly Gaussian with x1 and x2 independent, then

θ̂ = E {θ}+Cθx1C
−1
x1

(x1 − E {x1}) +Cθx2C
−1
x2

(x2 − E {x2})

3. Jointly Gaussian case results in an a�ne estimator.

θ̂ = Px+m

Vector MAP (Hit-or-Miss): The extension here is not as straight-forward as the MMSE case,

as the MAP estimates for all parameters θi may not be the same. For vector MAP, the

vector cost function is de�ned as

C(θ− θ̂) =

{
0, ∥θ− θ̂∥ < δ

1, ∥θ− θ̂∥ ≥ δ

The norm here is commonly selected as the ℓ2 (inner product) norm. In this case, the vector

MAP estimator becomes

θ̂MAP = argmax
θ∈Θ

p(θ |x)

This whole-vector MAP estimate is usually not the same as element-wise scalar MAP esti-

mate vector.

Performance of MMSE Estimation: Call the vector estimation error (which is a general de�nition,

not just for MMSE) as ϵ := θ− θ̂. If θ̂ = θ̂MMSE = E {θ |x}, then

E {ϵ} = 0 and Cϵ = Ex

{
Cθ |x

}
Cϵ is also called the Bayesian MSE Matrix, as the diagonal contains the BMSE's of each estimate.

Jointly Gaussian case: If the data vector x and the parameter vector θ are jointly Gaus-

sian, then the covariance matrix of the error matrix does not depend on x but only on its

covariance matrix Cx, meaning

Cϵ = Ex

{
Cθ |x

}
= Cθ |x = Cθ −CθxC

−1
x Cxθ

2.b Linear Bayesian Estimators

Core Idea: Restrict the form of the estimator to an a�ne one

θ̂LMMSE = Kx

and �nd the optimal such mapping in the Bayesian MSE sense. While I may lose from generality

and restrict to a (possibly narrow) set of estimators, LMMSE estimation only requires the �rst-

and second-order moments to work, not whole pdf's.

Orthogonality Principle: The most commonly used fact in the derivation of the coming results

is the orthogonality principle, which states that the estimation error vector is orthogonal to

the observations:

(θ− θ̂LMMSE) ⊥ x ⇒ E
{
(θ− θ̂LMMSE)

Tx
}
= 0

Vector LMMSE Solution: The solution to the LMMSE estimator in the vector case is as

follows:

θ̂LMMSE = E {θ}+CθxC
−1
x (x− E {x})
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The BMSE matrix for this estimate is

M
θ̂
= E

{
(θ− θ̂)(θ− θ̂)T

}
= Cθ |x = Cθ −CθxC

−1
x Cxθ

Notice how it matches with the joint Gaussian MMSE solution.

Bayesian Gauss-Markov Theorem: If the data is modelled as

x = Hθ+w

where

- θ has mean µθ and covariance Cθ,

- w has mean 0 and covariance Cw

- θ and w are uncorrelated,

then the LMMSE estimator of θ is

θ̂LMMSE = µθ +CθH
T (HCθH

T +Cw)
−1(x−Hµθ)

= µθ + (C−1
θ +HTC−1

w H)−1HTC−1
w (x−Hµθ)

The error vector ϵ = θ− θ̂ is then zero-mean and has covariance matrix Cϵ expressed as

Cϵ = Ex,θ

{
ϵϵT

}
= Cθ −CθH

T (HCθH
T +Cw)

−1HCθ

= (C−1
θ +HTC−1

w H)−1

Sequential LMMSE Estimation: Make use of the new observation x[n] to update the previous

estimate θ̂n−1 to θ̂n.

Model & Goal: Suppose I have the following data generation model:

x[n] = H[n]θ+w[n]

where

x[n](n+1)×1 =

[
x[n− 1]

x[n]

]
is the accumulated data vector

H[n](n+1)×p =

[
H[n− 1]

hT
n

]
is the accumulated matrix of observation models

θp×1 is the unknown parameter vector to be estimated

w[n] ∼ N
(
0, σ2

n

)
is the white noise vector with known covariance

The goal is to bene�t from the recursive structure[
x[n− 1]

x[n]

]
=

[
H[n− 1]

hT
n

]
θ+w[n]

in obtaining the current estimate θ̂[n] using the previous estimate θ̂[n− 1].

Core Idea: Make a prediction of the current estimate, then update it with the �novel informa-

tion� provided by the latest observation. This novel information is provided by the so called

Innovations Sequence.

Innovations Sequence: The innovations sequence is best described in the framework of vector

spaces with subspaces, projections and orthogonality.
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Inner Product Space of Random Variables: The set of random vectors form an inner

product space with the inner product de�ned as ⟨x,y⟩ = E
{
yTx

}
.

�Novel Information:� In this sense, the novelty of information one random variable has

with respect to another one is orthogonality (uncorrelatedness if one is zero-mean).

Therefore by applying the Gram-Schmidt orthogonalization process, I obtain the inno-

vations sequence x̃[n]:

x̃[0] = x[0]

x̃[1] = x[1]− ⟨x[1], x̃[0]⟩
⟨x̃[0], x̃[0]⟩

x̃[0]︸ ︷︷ ︸
:=x̂[1 | 0]

x̃[2] = x[2]− ⟨x[2], x̃[0]⟩
⟨x̃[0], x̃[0]⟩

x̃[0]− ⟨x[2], x̃[1]⟩
⟨x̃[1], x̃[1]⟩

x̃[1]︸ ︷︷ ︸
:=x̂[2 | 1]

...

x̃[n] = x[n]−
n−1∑
i=0

⟨x[n], x̃[i]⟩
⟨x̃[i], x̃[i]⟩

x̃[i]︸ ︷︷ ︸
:=x̂[n |n−1]

Sequential LMMSE: Here is the sequential LMMSE algorithm based on the idea of innovations

sequence:

Input:

- The prior �rst and second moments of θ: E {θ} and Cθ

- The observation model hn and σ2
n for all n

Initialization:

- θ̂−1 = E {θ}
- M−1 = Cθ

Loop:

1. Calculate the innovation:

x̃[n] = x[n]− x̂[n |n− 1]

= x[n]− hT
n θ̂n−1

2. Calculate the gain vector kn:

kn =
Mn−1hn

σ2
n + hT

nMn−1hn

No data needed for this calculation!

3. Calculate current estimate θ̂n:

θ̂n = θ̂n−1 + knx̃[n]

= θ̂n−1 + kn

(
x[n]− hT

n θ̂n−1

)
4. Calculate the current BMSE matrix Mn:

Mn =
(
I− knh

T
n

)
Mn−1

No data needed for this calculation!
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This loop rule can be derived by making the assumption that all variables are jointly

Gaussian, with the state space rules given by

θn = θn−1

x[n] = hTnθn + w[n] where w[n] ∼ N
(
0, σ2

n

)
The joint density of θn and x[n] can therefore be written as[

θn
x[n]

]
∼ N

([
θ̂n−1

hT
n θ̂n−1

]
,

[
Mn−1 Mn−1hn

hT
NMn−1 hT

NMn−1hn + σ2
n

])

Then the rule is directly obtained by writing the conditional density of θn |x[n]:

θn |x[n] ∼ N
(
θ̂n, Mn

)
θ̂n = θ̂n−1 +

Mn−1hn

hT
NMn−1hn + σ2

n︸ ︷︷ ︸
:=kn

(
x[n]− hT

n θ̂n−1

)
= θ̂n−1 + kn

(
x[n]− hT

n θ̂n−1

)

Mn = Mn−1 −
︷ ︸︸ ︷

Mn−1hn

hT
NMn−1hn + σ2

n

hT
nMn−1 = Mn−1 − knh

T
nMn−1

= (I− knh
T
n )Mn−1

Wiener Filter: The problem is to estimate a signal s[n] using observations x[n] corrupted by noise.

x[n] = s[n] + w[n]

Here, all signals are assumed to be WSS and zero-mean, with covariance/autocorrelation matrices

of appropriate order given by Rw = Cw and Rs = Cs.

Filtering, Smoothing, Prediction: Based on the Wiener �lter problem formulation, I obtain

three problems:

Filtering where you estimate s[n] based on the observations x[0 : n].

Smoothing where you estimate s[k] for k = 0, ..., n− 1 based on the observations x[0 : n].

Prediction where you estimate s[n+ k] for k = 1, 2, ... based on the observations x[0 : n].

General Solution: All of the problems above rely on the general LMMSE estimator solution,

which is

θ̂ = CθxC
−1
x x

2.c Kalman Filters (Kay's Version)

2.c.1 Kalman Filter (KF)

State Model: The dynamical state space I have is the following:

s[n] = As[n− 1] +Bu[n] State Model

where

s[n] is a vector Gauss-Markov process

A is the state transition matrix with eigenvalues in the unit circle
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B is the input matrix that �colors� the noise

u[n] ∼ N (0, Q) is the driving noise vector

s[−1] ∼ N (µs, Cs) is the initial state independent of u[n]

Propagation of Mean and Covariance: At each step, the state mean and covariance pro-

gresses by the following, rather intuitive rules:

E {s[n]} = AE {s[n− 1]}
Cs[n] = ACs[n− 1]AT +BQBT

However, only using the state model is not a very good estimation scheme, as the covariance

matrix will keep on growing as seen above.

Observation Model: To improve our estimate of the state, I make some observations modelled as

below:

x[n] = H[n]s[n] +w[n] Observation Model

where

x[n] is a vector of observations

H[n] is the observation function allowed to be time-varying

w[n] ∼ N (0, C[n]) is the AWGN on the observations

Kalman Filter (Kay, no derivation): What I aim to do is recursively generate an estimate ŝ[n] of

s[n], using the previous estimate ŝ[n − 1] and the newly available observation x[n]. This gives

me the Kalman Filter.

Input:

- State Model parameters: A, B and Q

- Observation Model parameters: H[n] for all n and C[n]

- Initialization parameters: µs and Cs

Initialization:

- ŝ[−1 | − 1] = µs

- M[−1 | − 1] = Cs

Loop:

Prediction: Follow the rules of state propagation.

ŝ[n |n− 1] = Aŝ[n− 1 |n− 1]

M[n |n− 1] = AM[n− 1 |n− 1]AT +BQBT

Kalman Gain:

K[n] = M[n |n− 1]HT [n]
(
C[n] +H[n]M[n |n− 1]HT [n]

)−1

Measurement Update:

ŝ[n |n] = ŝ[n |n− 1] +K[n]

x[n]−H[n]ŝ[n |n− 1]︸ ︷︷ ︸
x̂[n |n−1]


M[n |n] = (I−K[n]H[n])M[n |n− 1]
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2.c.2 Extended Kalman Filter (EKF)

Shortcoming of KF: While Kalman Filter is a powerful tool, it fails to account for nonlinear state

and observation models.

Core Idea: Make a �rst-order Taylor approximation of the nonlinear functions and use them.

Dynamical Model: With the nonlinear state and observation models, the dynamical model is ex-

pressed as follows:

s[n] = a(s[n− 1]) +Bu[n]

x[n] = hn(s[n]) +w[n]

Linearization: It is important to note that the linearizations are not made around a constant

value but around the previous prediction or state estimate.

a(s[n− 1]) ≈ a(ŝ[n− 1 |n− 1]) +

 ∂a

∂s[n− 1]

∣∣∣∣∣
s[n−1]=ŝ[n−1 | s−1]


︸ ︷︷ ︸

:=A[n−1]

(s[n− 1]− ŝ[n− 1 | s− 1])

hn(s[n]) ≈ hn(ŝ[n |n− 1]) +

 ∂hn

∂s[n]

∣∣∣∣∣
s[n]=ŝ[n | s−1]


︸ ︷︷ ︸

:=H[n]

(s[n]− ŝ[n | s− 1])

Extended Kalman Filter: The linearization above yields not necessarily a linear mapping but an

a�ne one, i.e. a linear one with an o�set. This o�set however is known at each step, and the

derivations work similarly as in KF.

Input:

- State Model parameters: a(·), B and Q

- Observation Model parameters: hn(·) for all n and C[n]

- Initialization parameters: µs and Cs

Initialization:

- ŝ[−1 | − 1] = µs

- M[−1 | − 1] = Cs

Loop:

Prediction: Follow the rules of state propagation according to the nonlinear state transi-

tion function.

ŝ[n |n− 1] = a(ŝ[n− 1 |n− 1])

Linearization:

A[n− 1] =
∂a

∂s[n− 1]

∣∣∣∣∣
s[n−1]=ŝ[n−1 | s−1]

H[n] =
∂hn

∂s[n]

∣∣∣∣∣
s[n]=ŝ[n | s−1]

Prediction MSE:

M[n |n− 1] = A[n− 1]M[n− 1 |n− 1]AT [n− 1] +BQBT

Kalman Gain: Same as KF.

K[n] = M[n |n− 1]HT [n]
(
C[n] +H[n]M[n |n− 1]HT [n]

)−1
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Measurement Update: Same as KF. Notice how even if I use the approximation, I obtain

the exact evaluation of the nonlinear observation function.

ŝ[n |n] = ŝ[n |n− 1] +K[n] (x[n]− hn(ŝ[n |n− 1]))

M[n |n] = (I−K[n]H[n])M[n |n− 1]

2.d Bayesian Filtering (Särkkä's Version)

Di�erent Way of Expressing Models: The state space model above in Kay's version is just one

way of expressing the state and observation models. In the most generic way possible, I can them

in two ways (in Särkkä's notation) as shown below.

Nonlinear State Space: In this form, the noise disturbance is expressed as by iid. samples

from a relevant distribution.

xk = f(xk−1,qk−1) State Model

yk = h(xk, rk) Observation Model

Generic Markovian State Space: In this form, the state and observation at each time k are

samples from a conditional distribution that implicitly models the noise disturbance.

xk ∼ p(xk |xk−1) State Model

yk ∼ p(yk |xk) Measurement Model

x0 ∼ p(x0) Initial/Prior Distribution

Hidden Markov Models (HMM): The Markov assumption speci�es the conditional (in)dependency

of the state progression. It assumes that the state xk depends only on the previous state xk−1

and is conditionally independent of all the previous states given xk−1:

p(xk |xk−1, . . . ,x0) = p(xk |xk−1)

In a Hidden Markov Model, such as the linear Gaussian model below, the state observations are

�hidden� and can only be inferred through another random variable yk. Observations yk at each

time instance only depends on the state xk at that time and is conditionally independent from

other observations and all previous states:

p(yk |xk, . . . ,x0,yk−1, . . . ,y0) = p(yk |xk)

This dependency can be summarized in the diagram below, where arrows indicate conditional

dependency:

Hidden States : x0 x1 · · · xk−1 xk

Observations : y0 y1 · · · yk−1 yk

f(·)

h(·)

f(·)

h(·)

f(·)

h(·)

f(·)

h(·)

General Bayesian Filtering: The aim of Bayesian �ltering is to generate the current conditional
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state distribution p(xk |y0:k) using the previous conditional state distribution p(xk−1 |y0:k−1)

and the observation model p(yk |xk).

Input:

- State space model distributions p(xk |xk−1) and p(yk |xk)

- Initial distribution p(x0)

Initialization:

- p(x0 |x−1) = p(x0)

Loop:

Time Update: Chapman-Kolmogorov Equation

p(xk |y0:k−1) =

∫
p(xk |xk−1)p(xk−1 |y0:k−1)dxk−1

Measurement Update: Bayes' Rule

p(xk |y0:k) =
p(yk |xk)p(xk |y0:k−1)∫
p(yk |xk)p(xk |y0:k−1)dxk

∝ p(yk |xk)p(xk |y0:k−1)

Linear Gaussian State Space Models: A speci�c instance of HMM are linear Gaussian state space

models:

xk = Ak−1xk−1 + qk−1 qk−1 ∼ N (0, Qk−1)

yk = Hkxk + rk rk ∼ N (0, Rk)

Equivalently, in terms of pdf's:

p(xk |xk−1) = N (xk;Ak−1xk−1,Qk−1)

p(yk |xk) = N (yk;Hkxk,Rk)

Kalman Filter (Särkkä, with derivation): Here I make the derivation of the Kalman Filter equa-

tions, based on the joint Gaussian marginalization and conditioning rules given in the prelimi-

naries.

Because the Gaussian distribution is uniquely determined by its mean vector and covariance

matrix, the recursion runs over those parameters.

Input:

- State model parameters: Ak−1 and Qk−1

- Measurement model parameters: Hk and Rk

- Initial mean and covariance: m0 and P0

Initialization:

- Start with the initial mean and covariance: m0 and P0

Loop:

Time Update: I know that the previous state xk−1 and the current state xk are jointly

Gaussian due to the current linear relation between them:[
xk−1

xk

]
=

[
I 0

Ak−1 I

] [
xk−1

0

]
+

[
0

qk−1

]
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where[
xk−1

0

]
|y1:k−1 ∼ N

([
mk−1

0

]
,

[
Pk−1 0

0 0

]) [
0

qk−1

]
∼ N

([
0

0

]
,

[
0 0

0 Qk−1

])
Then I obtain the following joint conditional distribution:[

xk−1

xk

]
|y1:k−1 ∼ N

([
mk−1

Ak−1mk−1

]
,

[
Pk−1 Pk−1A

T
k−1

Ak−1Pk−1 Ak−1Pk−1A
T
k−1 +Qk−1

])
Finally by the marginalization rule, I obtain the time update equation:

xk |y1:k−1 ∼ N
(
mk | k−1, Pk | k−1

)
mk | k−1 = Ak−1mk−1

Pk | k−1 = Ak−1Pk−1A
T
k−1 +Qk−1

Measurement Update: I already know that the observation vector yk and the current

state are jointly Gaussian because they are related by the following linear relation:[
xk

yk

]
=

[
I 0

Hk 0

] [
xk

0

]
+

[
0

rk

]
where[

xk

0

]
|y1:k−1 ∼ N

([
mk | k−1

0

]
,

[
Pk | k−1 0

0 0

]) [
0

rk

]
∼ N

([
0

0

]
,

[
0 0

0 Rk

])
Therefore their joint conditional distribution becomes the following:[

xk

yk

]
|y1:k−1 ∼ N

([
mk | k−1

Hkmk | k−1

]
,

[
Pk | k−1 Pk | k−1H

T
k

HkPk | k−1 HkPk | k−1H
T
k +Rk

])
Now, using the conditioning rule of joint Gaussians, I obtain the measurement update

equation:

xk |
y1:k︷ ︸︸ ︷

y1:k−1,yk ∼ N (mk, Pk)

mk = mk | k−1 +Pk | k−1H
T
k

(
HkPk | k−1H

T
k +Rk

)−1
(yk −Hkmk | k−1)

Pk = Pk | k−1 −Pk | k−1H
T
k

(
HkPk | k−1H

T
k +Rk

)−1
HkPk | k−1

Now, calling

Kk = Pk | k−1H
T
k

(
HkPk | k−1H

T
k +Rk

)−1

as the Kalman gain, the equations simplify signi�cantly:

mk = mk | k−1 +Kk(yk −Hkmk | k−1)

Pk = Pk | k−1 −KkHkPk | k−1 = (I−KkHk)Pk | k−1

Extended Kalman Filter (EKF): As before, this time the state transition function are not linear

but general, but the noise is still additive WGN:

xk = f(xk−1) + qk−1 qk−1 ∼ N (0, Qk−1)

yk = h(xk) + rk rk ∼ N (0, Rk)
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The key point will be to linearize them around the previous mean:

f(xk−1) ≈ f(mk−1) + Fk−1

∣∣
mk−1

(xk−1 −mk−1)

h(xk) ≈ h(mk | k−1) +Hk

∣∣
mk | k−1

(xk −mk | k−1)

where Fk−1

∣∣
mk−1

and Hk

∣∣
mk | k−1

are the Jacobian matrices evaluated at xk−1 = mk−1 and

xk = xk | k−1, respectively.

Input:

- State model parameters: f(·) and Qk−1

- Measurement model parameters: h(·) and Rk

- Initial mean and covariance: m0 and P0

Initialization:

- Start with the initial mean and covariance: m0 and P0

Loop:

Time Update: This time, the conditional joint distribution of xk−1 and xk is not exact

but approximate:[
xk−1

xk

]
|y1:k−1 ∼ N

([
mk−1

f(mk−1)

]
,[
Pk−1 Pk−1F

T
k−1

∣∣
mk−1

Fk−1

∣∣
mk−1

Pk−1 Fk−1

∣∣
mk−1

Pk−1F
T
k−1

∣∣
mk−1

+Qk−1

])

Notice that a new Fk−1

∣∣
mk−1

has to be computed at each loop iteration, which is a

computational load. Then, again by the marginalization rule, I obtain the time update

equation:

xk |y1:k−1 ∼ N
(
mk | k−1, Pk | k−1

)
mk | k−1 = f(mk−1)

Pk | k−1 = Fk−1

∣∣
mk−1

Pk−1F
T
k−1

∣∣
mk−1

+Qk−1

Measurement Update: Similar to the time update, the conditional joint distribution of

yk and xk is approximate:[
xk

yk

]
|y1:k−1 ∼ N

([
mk | k−1

h(mk | k−1)

]
,[

Pk | k−1 Pk | k−1H
T
k

∣∣
mk | k−1

Hk

∣∣
mk | k−1

Pk | k−1 Hk

∣∣
mk | k−1

Pk | k−1H
T
k

∣∣
mk | k−1

+Rk

])

Again, a new matrixHk

∣∣
mk | k−1

has to be computed at each loop iteration. Again, using

the conditioning rule of joint Gaussians, I obtain the measurement update equation:

xk |
y1:k︷ ︸︸ ︷

y1:k−1,yk ∼ N (mk, Pk)

Kk = Pk | k−1H
T
k

∣∣
mk | k−1

(
Hk

∣∣
mk | k−1

Pk | k−1H
T
k

∣∣
mk | k−1

+Rk

)−1

mk = mk | k−1 +Kk(yk − h(mk | k−1))

Pk = Pk | k−1 −KkHk

∣∣
mk | k−1

Pk | k−1 =
(
I−KkHk

∣∣
mk | k−1

)
Pk | k−1
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